
Vehicle dynamics using a limit surface treatment of
the tyre±road interface

S J DiMaggio and M P Bieniek

Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, USA

Abstract: A new method of dealing with the force-producing mechanism at the tyre±road interface is

presented. The tyre model consists of a representation of the tyre elasticity and the relations between the

interface forces and the contact patch displacement. These relations are described in terms of the `tyre limit

surface'. The model appears to be capable of reproducing the tyre behaviour under both free-rolling and

fully locked wheel conditions. A satisfactory agreement has been obtained between the available ex-

perimental data on the force versus slip parameters and the predictions of the present model. Applications

to two problems of vehicle dynamics, oversteer versus understeer behaviour and motion with locked rear

wheels, are presented.
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1 INTRODUCTION

While there has always been a demand for vehicle

dynamics simulation, the need for accurate and computa-

tionally efficient methods has increased owing to the

emergence of new technology such as yaw- and roll-rate

sensing and traction control. The optimal interaction

between the sensor and the resulting control forces cannot

be achieved in an economical manner using trial-and-error

experimental techniques, and thus a computational ap-

proach must be used. Models have been developed for

various applications in the field of vehicle dynamics by a

number of researchers. These models vary in their com-

plexity from simple two-degree-of-freedom systems to

detailed finite element representations of the entire car.

Regardless of the detail used in the formulation of the

equations of motion for these models, a comprehensive

description of the forces generated at the tyre±road

interface is intrinsic to the accuracy of the analysis. In the

most general analysis of a vehicle, these forces must be

accurate over a wide range of dynamic behaviour, from

slow steady-state turning manoeuvres to emergency condi-

tions in which the vehicle is skidding.

Vehicle dynamics models and their applications in analy-

sis, design and driver simulation have been developed by

many researchers. The requirements and complexity of

these models are largely dependent on their application and

this topic has been discussed in depth [1, 2]. The equations

of motion governing the vehicle dynamics can be generated

using several approaches, from methods in which the

analyst derives the equations of motion using only the

variables necessary for a particular application [3±5], to

multibody formulations where the system geometry and

kinematic quantities and constraints are input to a computer

which, in turn, generates the equations of motion [6].

Regardless of the approach taken, the success of any

vehicle dynamics model depends largely on an accurate

determination of the tyre forces.

There are three different approaches to tyre modelling in

the context of vehicle dynamics analysis. The first of these

uses a physical model of the tyre, as in reference [7] where

the tyre is made up of discrete deformable radial spokes.

Other workers [8] use a series of springs which produce

forces in the contact patch. A good review of this type of

approach has been given in reference [9]. Note that the

parameters in these models must be set to create a match

with measured tyre data. A second approach entails the

storage of a large amount of experimental data [10], using

interpolation to describe arbitrary conditions. The final

approach, which appears to be the most popular [11±15], is

to determine a function which relates tyre forces and

moments to problem parameters such as slip angle and

camber. Through suitable choices of the constants in these

empirical relationships, good correspondence to experi-

mental data can be achieved. While some early work could

not deal with aggressive vehicle dynamics because simple

linear relationships between forces and slip parameters
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were used, more recent theories can handle a more general

class of manoeuvres in which the composite tyre force

approaches the friction ellipse. In a complete departure

from these traditional approaches, a new method is pre-

sented in this paper which uses a mathematically defined

limit surface to determine the tyre forces at arbitrary

operating conditions.

In order to focus on the new tyre model, the complex-

ity of the automobile dynamics is kept to a minimum.

The vehicle is modelled as a rigid body with two

translational degrees of freedom in the plane of the

ground, which is flat, and one rotational degree of

freedom about an axis perpendicular to the ground plane.

This approach neglects the effects of roll, pitch and load

transfer between the wheels. In the tyre model, self-

aligning torques and wheel camber are assumed to be

negligible and no time lag in force generation is consid-

ered. While various limitations are present owing to this

simplified approach, the formulation of the tyre model is

kept as general as possible in order that it be compatible

with more complex vehicle dynamics which will be

considered in the future.

The restrictions imposed by these assumptions are

similar to those present in an early paper on the subject

[16], and the formulation of the vehicle dynamics is

therefore comparable. Equations of motion are written in

terms of the kinematic variables and the forces and

moments acting on the vehicle. After solving these

equations and updating the variables and system geome-

try, new tyre forces are computed. Unlike the formula-

tions in references [3] and [16], and some other simple

vehicle dynamics models, the forces due to the indepen-

dent left and right wheels are not added to produce a

single force at a particular axle. In other words, the

yawing moments due to tyre forces parallel to the vehicle

centre-line are not neglected.

2 VEHICLE DYNAMICS

The geometry, kinematic variables and forces acting on the

vehicle are shown in Fig. 1.

2.1 Kinematics

Two reference frames are necessary in the formulation of

vehicle dynamics in this paper. A frame S is fixed in space

and described by a unit triad er, es, e t, while a unit triad

ex, e y, ez, fixed in the vehicle frame V, describes the

orientation of the car relative to S. Owing to the simplifica-

tions mentioned previously, the unit vectors e t and ez are

identical and perpendicular to the plane of the road at all

times. Therefore, only the unit vector ez will be used to

refer to this direction. In future work, which will include

the pitch and roll motions of the vehicle, the independence

of these vectors must be maintained.

Three kinematic variables describe the position and

orientation of the vehicle. These are the components of the

position vector of the centre of mass:

uc � urcer � usces (1)

and the rotation

ö � öez (2)

of the vehicle frame about an axis through its centre of

mass and perpendicular to the ground plane.

The other kinematic quantities of interest will be the

position vectors associated with the wheel hubs and the

centres of the contact patches. These vectors will not be the

same, as it is the relative displacements of the two which

leads to the forces in the tyre model to be described in

depth later. The position vectors of the wheel hubs are

ui � urier � usies (3)

or

ui � uxiex � u yie y (4)

and the position vectors of the centre of the wheel contact

patches are

d i � d rier � dsies (5)

or

d i � dxiex � d yie y (6)

The subscript i � 1, 2, 3, 4 describes the wheels starting

from the front right and going clockwise to the front left.

This convention and the use of the subscript i will be

maintained throughout the rest of this paper. Note that the

position vectors of the centres of the contact patches are

Fig. 1 Vehicle kinematics
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not shown in Fig. 1 and only the position vector of one of

the wheel hubs is presented.

The position vectors of the wheel hubs are not indepen-

dent of the position vector and rotation of the vehicle centre

of mass. They are related through the equation

ui � uc � ri (7)

where

ri � rxiex � ryie y (8)

is the position vector of wheel hub i relative to the centre of

mass and whose components rxi and ryi are constants.

All the vectors in this work can be written with respect to

unit vectors fixed in either of the two frames. The

subscripts r and s will denote components with respect to

the Newtonian reference frame, while subscripts x and y

will indicate components with respect to the vehicle frame.

Henceforth, vectors will be presented with components

relative to one particular unit triad, with the understanding

that the components relative to the other triad can be

obtained using a simple coordinate transformation.

2.2 Forces and moments

The forces and moments acting on the vehicle in this paper

are due primarily to the forces generated at the tyres. Any

additional forces acting on the centre of mass will consist

of components Pr and Ps. The forces in the r and s

directions are

Fr � Pr �
X

i

Fri (9)

and

Fs � Ps �
X

i

Fsi (10)

where Fri and Fsi are the components of the force exerted

by the road on the tyre for wheel i and the sums are taken

over the number of tyres. Note that in Fig. 1 the compo-

nents of the tyre force vector for tyre 1 are shown with

respect to unit vectors fixed in the vehicle.

The moment acting at the centre of mass about an axis

perpendicular to the ground plane is

G � T �
X

i

Gi (11)

where the tyre forces contribute

Gi � rxi Fyi ÿ ryi Fxi (12)

and the summation is again over the number of wheels.

Any torque not due to the tyre forces is contained in

term T.

2.3 Equations of motion

Once the forces are obtained, three second-order or-

dinary differential equations governing the system are

easily obtained. Using equations (9) to (12), these are

M�urc � Fr � Pr �
X

i

Fri (13)

M�usc � Fs � Ps �
X

i

Fsi (14)

I �ö � G � T �
X

i

Gi

� T �
X

i

(rxi Fyi ÿ ryi Fxi) (15)

In equations (13) to (15) the double dot over a symbol

denotes differentiation twice with respect to time in the

Newtonian frame, and M and I denote the mass and polar

mass moment of inertia respectively relative to the mass

centre of the vehicle.

3 THE TYRE MODEL

The tyre model proposed in this paper consists of two

components. One of these is the set of elastic springs which

models the deformation of the tyre with respect to the

wheel hub. The other component is the tyre±road interface

which defines the resistance to the rolling or sliding motion

of the tyre. The contact between the road and the tyre

occurs over a finite area called the contact patch. In this

formulation, the contact patch is represented by a point and

it is assumed that the forces at the tyre±road interface act

at this location.

3.1 Physical representation

A schematic representation of the tyre is shown in Fig. 2.

The vector ui represents the position of the ith reference

point on the vehicle frame. Owing to the present assump-

tion of a rigid connection between the wheel hub and the

frame, this reference point is also the position of the wheel

hub. Thus, in Fig. 2, Hi is the ith wheel hub and Pi is the

location of the ith contact patch. The distinction between a

reference point and the wheel hub is made so that a more

accurate representation of the actual connection between

the wheel hub and the frame can be included in future

models. The position of the contact patch is represented by

the vector d i. Since the wheel plane is not, in general,

parallel to the vehicle longitudinal axis ex, an additional

coordinate system, defined by unit vectors eîi and eçi, is

introduced. Because the wheel camber is not considered,

the third unit vector in this triad is ez. In this coordinate
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system, the îi axis remains parallel to the wheel plane at all

times. Hence, the displacement of the contact patch relative

to the wheel hub is

d i ÿ ui � (dxi ÿ uxi)ex � (d yi ÿ u yi)e y (16)

or

d i ÿ ui � (dîi ÿ uîi)eîi � (dçi ÿ uçi)eçi (17)

The elasticity of the tyre is represented by the springs kîi

and kçi. In general, these springs should be non-linear,

consistent with the deformation characteristics of the tyre.

The hysteretic properties of the tyre should also be included

by introducing some viscoelastic elements. However, in

order to simplify the present analysis, the springs are

assumed to be linear and the hysteresis is neglected.

Accordingly, the force transmitted from the contact patch

to the vehicle is related to the relative displacement in

equation (17) by

Fîi

Fçi

� �
� kîi 0

0 kçi

� �
dîi ÿ uîi

dçi ÿ uçi

� �
(18)

or, using a more compact notation,

Fi � Ki(d i ÿ ui) (19)

In equation (19), the force vector and the relative displace-

ment vector are referred to the tyre coordinate system îi

and çi. Thus, an additional transformation of the force

components from the tyre coordinate system to the global

system, s and r, must be performed prior to the substitution

of these components into the equations of motion.

3.2 The limit surface

The concept of a limit surface is the main element of the

tyre model and the central point of this paper. Specifically,

the tyre model is based on the premise that the interaction

between a pneumatic tyre and the road can be described by

a mathematically defined limit surface. In order to simplify

the notation in this section, the subscript i will be dropped.

In general, the forces acting at the tyre±road interface

have three components, Fî, Fç and Fz, with Fz being

normal to the contact patch plane. For the wheel model

proposed in this paper, it is postulated that, at any set of

vehicle operating conditions, there is a function of the

variables Fî, Fç, Fz, and, in general, other parameters,

such that the equation

Y (Fî, Fç, Fz, . . .) � 0 (20)

defines a surface in the space of forces Fî, Fç and Fz,

which determines the relation between forces acting on the

contact patch and the resulting tyre motion. This tyre

motion may consist of rolling, slipping or a combination of

the two. In the FîFç plane, equation (20) defines a curve.

One function of the surface in equation (20) is to define the

maximum magnitude which the interface force can attain at

a particular set of operating conditions. In this sense the

surface sets a limit on the magnitude of the tyre forces, and

thus the term `limit surface' appears to be appropriate. The

form of this limit surface must be determined on the basis

of tests for a given tyre and at various sets of road and

operating conditions.

As an example, consider an elliptical limit surface

defined by

F2
î

a2
� F2

ç

b2
ÿ 1 � 0 (21)

with the parameters a and b depending on Fz and also other

variables. By changing the parameters a and b, a narrow

ellipse may be obtained for the rolling condition of the

wheel, while a fuller ellipse, possibly approaching a circle,

can be used for a tyre sliding with a fully locked wheel.

Both of these cases are illustrated in Fig. 3.

In addition to setting the maximum magnitude of the

interface force, the limit surface must also define the

motion of the contact patch. The combination of interface

forces such that

Y (Fî, Fç, Fz, . . .) , 0 (22)

corresponds to the contact patch remaining stationary with

respect to the road. It is only when Y (F) � 0 that the

contact patch will move. It is proposed that the direction of

tyre motion, which can include both rolling and sliding, is

such that the contact patch velocity vector _d is normal to

the limit surface. Note that the dot over d denotes time

differentiation in the Newtonian reference frame. Mathe-

matically, this means that

( _dî, _dç) � ë
@Y

@Fî
,
@Y

@Fç

� �
(23)

or

_d � ë
@Y

@F
(24)

Fig. 2 Tyre model
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where ë is a proportionality factor. The direction of _d is

shown in Fig. 4. Note that by using equations (19) and (24)

both the tyre±road interface forces and the contact patch

velocity are defined. Equation (19) can also be rewritten in

the rate form as

_F � K( _d ÿ _u) (25)

Additionally, during the contact patch motion defined by

equation (24), the equation of the limit surface in equation

(20) must also be satisfied. This equation may also be

written in the rate form as

_Y � @Y

@Fî

_Fî � @Y

@Fç

_Fç � @Y

@F

� �T

_F � 0 (26)

and, in this form, is referred to as the consistency condition.

Combining equations (24), (25) and (26), the parameter ë
can be determined:

ë � (@Y=@F)TK _u

(@Y=@F)TK(@Y=@F)
(27)

Once ë is determined, the motion of the contact patch and

the change in the tyre forces can be found using equations

(24) and (25).

By inserting the expression for ë into equation (24) and

then substituting this into equation (25), the following

direct rate relation between the tyre force and the hub

displacement is obtained:

_F � D _u (28)

where

D � K
(@Y=@F)[(@Y=@F)TK]

(@Y=@F)TK(@Y=@F)
ÿ 1

 !
(29)

is the equivalent tyre stiffness, which includes the effect of

the contact patch motion.

4 COMPUTATIONAL IMPLEMENTATION OF

THE TYRE MODEL

In order for this method of interface force calculation to be

useful, an efficient computational procedure must be avail-

able to solve the governing equations of the previous sec-

tion. These equations are reproduced in their incremental

form and a basic solution procedure is presented. Again,

the subscript i is supressed.

4.1 Incremental form of the governing equations

The complete set of equations for the calculation of the

interface forces consists of the following:

1. The equation of the current limit surface is

Y (F, . . .) � 0 (30)

2. The sliding rule is:

Fig. 3 Examples of the limit surface

Fig. 4 Direction of the contact patch velocity
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(a) If Y � 0 and (@Y=@F) _F . 0,

Äd � Äë
@Y

@F
(31)

(b) If Y , 0 or (@Y=@F) _F , 0,

Äd � 0 (32)

3. The consistency condition is

ÄY � @Y

@F
ÄF � 0 (33)

which holds in case (a) above and which is used to

eliminate Äë in equation (31).

4. An incremental form of the force±deflection law in

equation (25) is

ÄF � K(Äd ÿ Äu) (34)

This can be rewritten as

ÄF � ÄFN � ÄFS (35)

where

ÄFN � ÿKÄu (36)

and

ÄFS � KÄd (37)

4.2 Return algorithm

Once the equations of motion (13) to (15) are solved, the

incremental hub displacement Äu is known owing to the

treatment of the vehicle as a rigid body. During one time

step, let ÄF be the total increment in the interface force

from an initial force F0 to a final force F2:

F2 � F0 � ÄF (38)

The steps needed to calculate F2 are referred to as the

return algorithm and are as follows:

1. Use the value of Äu to obtain the first part of the

increment in force ÄF:

ÄFN � ÿKÄu (39)

2. Add ÄFN to the initial force F0 to obtain F1:

F1 � F0 � ÄF N (40)

At this point, if the force vector F1 lies inside the limit

surface, the total increment in force is ÄF � ÄFN and

no motion of the contact patch develops. However,

consider a force vector F1 which lies outside the limit

surface Y (F) � 0:

Y (F1) � c (41)

where c . 0.

3. One must therefore `return' to the limit surface. This

means that the final force vector F2 must be determined.

This vector must satisfy the condition that Y (F2) � 0.

From Fig. 5 and equation (35), it can be seen that ÄFS is

the vector which will return the force to the limit surface.

4. Approximately (using a discrete form of the consistency

condition between F1 and F2),

Y (F2)ÿ Y (F1) � @Y

@F
ÄFS (42)

or

ÿY (F1) � @Y

@F
ÄFS (43)

5. Combining equations (31), (37) and (43),

Äë � ÿY (F1)

(@Y=@F)TK(@Y=@F)
(44)

The incremental force ÄF, and therefore the final force

F2, follow immediately from equations (31), (35) and (37).

The above scheme yields only an approximate value of

the final force F2 at the end of a time step. The errors stem

from the use of finite increments of the displacements and

forces in the simple first-order formulae and the calculation

of the limit surface gradients at the point F1, which does

not determine the exact direction of the contact patch

displacement increment. The magnitude of the errors can

be reduced by decreasing the time step of the numerical

integration of the equations of motion at the expense,

Fig. 5 Return to the limit surface
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however, of the computational efficiency of the procedure.

In the examples given in this paper, subcycling of the return

algorithm within a given time step and certain iteration

procedures have been explored. Progress on the optimal

methods of improving the accuracy of the calculations will

be reported shortly.

5 APPLICATIONS

5.1 Example 1: force versus slip angle carpet plot

For the method proposed to be useful, it must be able to

represent real tyre lateral force data. To show that this can

be done with the tyre model proposed in this paper, lateral

force versus slip angle and normal force results are com-

pared with those given by Nordeen and Cortese [18]. The

data are given for three values of normal force between 600

and 1400 lbf.

The elliptical limit surface shown in Fig. 3a is used to

model a rolling tyre. The direction of contact patch motion,

by virtue of equation (24), is normal to the limit surface

and shown in Fig. 4. Therefore, what is commonly referred

to as the slip angle á is actually the angle formed by the

normal to the limit surface and the î axis. Since the

equation for the limit surface is

Y � F2
î

a2
� F2

ç

b2
ÿ 1 � 0 (45)

the equation relating lateral force and slip angle is

á � arctan
(@Y=@F) eç

(@Y=@F) eî

 !

� arctan
a2 Fç

b2

r
a2 1ÿ F2

ç

b2

� �� �0B@
1CA (46)

The ç intercept on the limit surface is equal to the

normal force N times the coefficient of friction ì at the

tyre±road interface. This coefficient is a function of the

normal force on the tyre and is chosen such that there is

good correlation with experimental force±slip angle meas-

urements at the largest slip angles [8]. The î intercept is

then chosen to ensure that the lateral force at small slip

angles is linear and not a function of the normal force [18].

In this manner, using an extremely simple curve-fitting

technique, the following relations for the î and ç intercepts

on the limit surface of Fig. 3a were generated (in SI units):

a � b2

50 939:25
(47)

and

b � ì(N )N (48)

where

ì(N ) � 1:16ÿ 5:12 3 10ÿ4 N � 2:03 3 10ÿ7 N 2 (49)

A comparison of the present results with the data in

reference [18] is given in Fig. 6. Small discrepancies can

be attributed to the fact that the curve fitting was done with

data points scaled from the original figure given in refer-

ence [18]. Using the exact numerical data and a more

rigorous curve-fitting procedure would lead to a better fit

between the two sets of results.

5.2 Example 2: Olley's oversteer±understeer

problem

Another of the requirements for the tyre model should be

its ability to treat the directional control properties of a

vehicle. One example which can be used to verify this

ability was introduced by Olley [19], and later discussed in

references [20, 21], among others. In Olley's problem, a

lateral force is applied to the centre of gravity of a vehicle

which is moving in a straight line with no steer angle. It

can be shown that an oversteer vehicle follows a trajectory

which curves towards the input force. The understeer

vehicle follows a trajectory which curves away from the

force, while the neutral steer vehicle deviates away from

the input in a straight line.

In this example, the understeer, neutral steer and

oversteer vehicles are characterized by having their engines

in the front, centre and rear of the vehicle respectively. The

tyre properties for all four rolling wheels are the same as

those given in Example 1.

The geometry of the vehicle used in this example is

shown in Fig. 7, where the shaded area indicates the engine

location. The three vehicles examined have their engines

positioned with the centres of mass at rE � ÿ1:05, 0.0 and

1.05 m for the oversteer, neutral steer and understeer cases

respectively. The total vehicle mass is 570 kg, the engine

mass is 150 kg, and both are assumed uniform over their

respective areas. The initial velocity of the vehicle is

10 m=s and a lateral Heaviside step input force of magni-

tude P0 � 600 N is applied.

The trajectories for the three cases are consistent with

previous results and are shown in Fig. 8 for displacements

in the r direction up to 60 m.

5.3 Example 3: stability of vehicles with locked rear

wheels

In this example a straight-moving rolling vehicle is sub-

jected to a small angular disturbance, in the form of a small

angular velocity input ù0, at the same time that the two

rear wheels are locked. No front steer angles are input to

the problem. It has been shown by Koiter and Pacejka [3],

as well as other workers, that this type of input leads to

instability of the vehicle as the forward speed increases. In
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this example, instability will be characterized by the

following equation:

ö(ts)

ö̂(ts)
. 1 (50)

where

ö̂(ts) � ù0 ts (51)

and ts is the time that it takes the vehicle to come to rest.

Note that ö is the angle between the ex unit vector, which

is fixed in the vehicle, and the er unit vector, which is fixed

in space. For the neutral steer vehicle of Example 2, the

initial velocity leading to instability was approximately

10:8 m=s.

Koiter and Pacejka [3] gave an estimate for this critical

velocity as

Vcr � p(ìgL) (52)

where L is the distance between front and rear axles. For

the geometry in this example this leads to a critical velocity

of 4:72 m=s. The large difference in results is mostly

attributable to the fact that Koiter and Pacejka [3] modelled

the rolling wheels at the front as a pair of skates. They did

state that the critical speed is increased by about 10 per

cent by the introduction of a finite cornering stiffness for

the front wheels. Furthermore, the critical speed given by

equation (52) was developed from equations which as-

sumed that the rotation of the vehicle about an axis

perpendicular to the road surface was small and yawing

moments due to tyre forces parallel to the vehicle centre-

line were not considered. The definition of instability in

reference [3] is that the initial disturbed angular velocity

increases in the ensuing motion. This is obviously not the

same as the definition in equation (50), which expresses

the condition that the initial disturbance is amplified at the

time when the vehicle stops. The comparison of the results

in this example with those in reference [3], therefore, is

useful only in the qualitative sense.

Fig. 6 Lateral force versus slip angle and normal force

Fig. 7 Vehicle geometry
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To model the locked rear wheels, the circular limit

surface shown in Fig. 3b was used. The î and ç intercepts

b are taken from equations (48) and (49) in Example 1.

Note that with a circular limit surface the direction of the

contact patch motion is parallel to the direction of the

frictional force. This is consistent with the assumption of

many workers when considering the frictional force

produced by the skidding of a locked wheel across the

road surface.

In this example, the assumption is that the limit surface

changes instantaneously from a rolling (elliptical) to a fully

locked (circular) limit surface. More refined models will

use a braking slip parameter to change the î intercept of

the limit surface from its rolling shape to its fully locked

shape in a continuous manner.

6 CONCLUDING REMARKS

As the complexity of automotive control systems increases,

the need for accurate computer modelling of the vehicle

becomes imperative. Without these models, calibration of

the control systems for use with input data obtained from

sensors in the car becomes prohibitively expensive. Fur-

thermore, because the purpose of these systems is to help

to control automobiles during extreme handling man-

oeuvres while remaining active during normal driving

circumstances, the vehicle models must be dependable at

all operating conditions.

The tyre model presented in this paper is aimed at

representing the tyre elasticity as well as the displacement

of the tyre±road contact patch and the forces transmitted

from the road to the vehicle. The concept of the limit

surface has been shown to be capable of reproducing the

longitudinal and transverse tyre behaviour under free-

rolling and fully locked wheel conditions. The model

requires experimental determination of a relatively small

number of parameters and is computationally efficient,

even at the present stage of a low degree of optimization of

the computational procedures. Additionally, it can be used

together with vehicle models of considerably higher

complexity than those employed in this paper.

Immediate consideration is being given to the computa-

tional efficiency of the return algorithm. Once this is done,

the effects of braking and longitudinal slip will be consid-

ered. For instance, as mentioned in Example 3, the braking

phenomenon will be modelled by allowing the î-axis

intercept of the limit surface to change from its rolling

(elliptic) value to its fully locked (circular) value in a

continuous manner. This change in the intercept will be some

function of the longitudinal slip. Finally, the complexity of

the vehicle dynamics will be increased to include pitch and

roll motions of the car and the tyre model will be expected to

incorporate the effects of such phenomena as wheel camber,

self-aligning torques and time lag in force generation.

Fig. 8 Olley's oversteer±understeer problem
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