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Abstract: This paper presents a new approach to obtaining an accurate simple model for complex
mechanical systems. The methodology is applied to a quarter-car suspension system with complex
linkage structures. Firstly, a multi-body dynamic model which includes kinematic characteristics is
developed. Using a linearization technique, a 32-state linear model for a quarter-car system is
obtained. Secondly, model reduction techniques are applied to find a reasonable reduced-order
model. The result of the model reduction shows the validity of the two-mass model given that the
parameters are correctly identified. The paper presents both an analytical and an experimental way of
identifying the parameters of the two-mass system based on the reduced-order model. The identified
parameters are shown to vary significantly from component data typically used for the two-mass
system depending on kinematic structures of the suspension system. The modelling procedures out-
lined in this paper provide a precise and efficient way of designing active suspension systems that
minimizes a necessary tuning process.
Keywords: reduced-order model, quarter-car suspension, identification, equivalent parameters
NOTATION x state vector of original model
Xp state vector of balanced system
a;, bi coefficients of transfer function Xm state vector after modal transformation
A,B,C,G system matrices of original model X; state vector of the reduced-order model
Ay, By, ... system matrices of the balanced system X state vector of two-mass model
A, By, ... system matrices after modal transformation y output vector
A, B, ... system matrices of the reduced-order model zi, Vi, s, ¢; variables for suspension part i
A, Bs, G system matrices of two-mass model Zsy Zu displacement sprung mass and unsprung
A, B, G, system matrices of modified reduced-order mass
model L .
b, damping rate of strut (N s/m) A characteristic polynomial
I tyre force input (N) n very small parameter to be perturbed
ks suspension spring stiffness (N/m)
ky tyre spring stiffness (IN/m)
s sprung mass (kg) 1 INTRODUCTION
Mg, Ay, ... estimated values of parameters
my unsprung mass (kg) Active control of vehicle suspension systems has been a
q variable to be removed after perturbation topic of growing interest for years. The benefits of active
Ty transformation matrix for balancing suspension have been known as improved ride quality
T modal transformation matrix and handling performance at the same time, which are
u control force input (N) the trade-offs in conventional passive systems. As a
W Grammian matrix of balanced system result, there have been a great number of papers on this

topic that explore various kinds of control algorithms
[1-4].

In most cases, the quarter-car system in Fig. 1 is
used for the ride analysis and active suspension design.
With the current trend of four independent suspension
systems on a single automobile, a quarter-car system
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Fig. 1 A quarter-car suspension system and its simplified
model (two-mass model)

offers a quite reasonable representation of the actual
suspension system.

As a simplified model for the quarter-car system, a
well-known two-mass model has been used mostly. The
two-mass model is simple yet effective in representing
the two dominant modes (sprung mass bouncing and
wheel hopping) of a quarter-car system.

The two-mass model is composed of two lumped
masses, a linear spring, a damper and a tyre. In many
previous works, these data have been assumed to be
available. For example, the spring stiffness and damping
coefficient are obtained on the basis of component data.
Also, the unsprung mass is calculated using the sum-
mation of suspension linkages. However, as shown in
the previous study [5], the simple model may not be as
effective as might be expected without considering the
influence of the suspension kinematic structure. For
example, two suspension systems with the same com-
ponent properties behave differently with different sus-
pension kinematic structures. As a suspension system
becomes more complex (e.g. double wishbone type,
multilink type, etc.), the suspension kinematic structure
takes on a greater impact.

The study [5] shows that the response of two-mass
model with the nominal set of data (based on the com-
ponent data) is different from the response of the real
system. A parameter identification method based on the
least-squares method was used to obtain a more accu-
rate set of equivalent parameters. It was observed that
the values of the identified parameters varied widely
depending on the suspension structure. Even for the
same suspension type, different linkage layouts pro-
duced different sets of identified parameters.
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With the parameter identification, the identified sim-
ple model becomes closer to the real system than the
nominal simple model. However, there still exist some
discrepancies between the identified simple model and
the real system for the actuator input response. Finding
possible sources of these discrepancies is the primary
motivation of this present study.

The reason for the discrepancies could be one (or
both) of the following: (a) the limitation of two-mass
model structure; (b) the limitation of the least-squares
method in approximating the parameters.

In order to investigate the first possibility, a real
quarter system is modelled as a complex multibody
dynamic system. The model includes all the suspension
linkages and connecting elements (e.g. spring, damping,
bushings and joints, etc.). As a result, the complex
model has considerably more degrees of freedom (DOF)
than the two-mass model.

After the complex model has been linearized, several
model reduction techniques are used to find an ‘optimal’
reduced-order model (i.e. the smallest size model which
is close to the real system). A classical dominant mode
technique and the balanced realization technique are
used. As a result, a reduced-order model which has the
same size as the two-mass model is obtained.

For the second possibility, a more accurate set of
equivalent parameters is obtained by comparing the
reduced-order model and the two-mass model. The
result reveals the effectiveness of the two-mass model
structure, assuming that accurate equivalent parameters
are used. In the process, a convenient way of obtaining
the set of equivalent parameters of the two-mass system
is introduced. Also, an experimental way of obtaining
the equivalent parameters is described. Finally, the effect
of suspension type on the equivalent parameters is
investigated.

The rest of this paper is organized as follows. In
Section 2, obtaining simple models using model reduc-
tion techniques is described. In Section 3, a set of
equivalent parameters of a two-mass model is obtained
by comparing the result of Section 2. In Section 4, an
experimental way of finding equivalent parameters is
proposed. In Section 5, the effect of suspension structure
on the equivalent parameters is investigated for a dif-
ferent type of suspension system. The conclusion reviews
and recommends further topics.

2 SIMPLIFIED MODEL USING MODEL
REDUCTIONS

2.1 Suspension models for a quarter-car

Figure 2a shows a complex multibody dynamic model
used to analyse a quarter-car system which includes
suspension linkage and connecting elements (e.g. bush-
ings, joints, . . ., etc.). With the help of commercial soft-
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Fig. 2 Models of a quarter-car suspension system

ware it becomes easy to build such a complex system
and to obtain an accurate system response.

So far, however, a simple two-mass model (Fig. 2b)
has been used the most frequently in the field of active
suspension studies. This is because the model is simple
yet captures important characteristics of a real vehicle
including two major vibration modes (bouncing and
wheel hopping). The two-mass model is composed of the
sprung mass and the unsprung mass connected with
spring and damping elements. The tyre is modelled as a
linear spring and its damping is neglected in many cases.
The key to modelling a quarter-car system with a two-
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mass model structure is determining these equivalent
parameters (myg, my, ks, bs and k;).

In much on-going research on active suspension, the
equivalent parameters are assumed to be known.
Mostly, the parameters are obtained from the compo-
nent data provided by suspension part vendors. This is
especially true for the spring, tyre and damper elements.
The unsprung mass is usually calculated from the sum-
mation of suspension links which move along with the
wheel and tyre. Finally, the sprung mass is calculated by
subtracting the unsprung mass from the entire quarter
car load.

However, the ‘nominal model’ (a model that is based
on component data) may not be as effective as might be
expected. As shown in the previous study [5], there exist
‘invisible uncertainties’ (i.e. those that are not shown in
the component data) owing to its suspension structure.
That is, the equivalent suspension parameters of the
simple model are highly affected by the change of
suspension linkage layout and/or structure. Figure 3
shows the discrepancies between the responses of the
original system and the simple model with nominal
data.

If the discrepancy comes from the limitation of model
structure, then it raises a question, “What is the smallest
size of model that describes the real quarter car system
with reasonable accuracy? In order to answer the
question, the present work starts with the complex
model of Fig. 2a.
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Fig. 3 The comparison of the system responses between the original system and the nominal simple model.

(From reference [5])
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Table 1 The definitions of variable and body numbers
Number Name of
Variables Definition of body body
z,z Vertical displacement and velocity 1 Car body (sprung mass)
v, Yaw rate and yaw angle 2 Upper control arm
0,6 Pitch rate and pitch angle 3 Lower control arm
0] Roll rate and roll angle 4 Knuckle and wheel
5 Tie rod
6 Road excitor
7 Strut upper part
8 Strut lower part

2.2 Linearization of a complex suspension model

A complex ADAMS model (Fig. 2a) is described by a
set of non-linear equations of motion:

X =f(x, u.f)

y=2g(x)

(Ia)
(I1b)

where x, # and f; are system state vector, control input
and tyre force input respectively.

Linearizing the equations around an equilibrium
position and using f; = kyw for tyre force, large-order
linearized equations of motion can be obtained:

x=Ax+Bu+Gw (2a)

y=0Cx (2b)
where

A— % e RV, B— 37{"6 g32x1

G =k E?_/{te e, czg—ie R

and ky is the tyre stiffness and w is the road displacement
input.

The control input u is the force generated by the
actuator installed parallel to the strut. The system out-
put y is defined as a 4 x 1 vector of displacement and
velocity of car body and wheel. For the double wishbone
type suspension model in Fig. 2a, the system has 16
DOF. The corresponding states of the linearized equa-
tions of motion are composed of 32 states:

x=[2 2192 Y2 b2 b2 62 62 U3 Y3 3 3
03 Oy Yiu Va da ba 04 Oy Vs s

bs b5 27 21 d1 7 67 67 VY V) (3)

4)

The definitions of variables and body numbers are
shown in Table 1. The subscript of each variable
represents the number of body used in the ADAMS
model.

y=1[z1 21 z4 24" =Cx
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Figure 4 shows the comparison of the response of the
linearized model and the original ADAMS complex
system. The result shows that there is little difference
between the responses before and after the linearization.
Even if the difference may become larger for a higher
amplitude input, 0.025m road input is fairly acceptable
as the nominal range of road input [3]. Therefore, it can
be concluded that the linearized model is very close to
the original system.

2.3 Model reduction of a quarter-car suspension model

From the perspective of controller design, the large-
order linearized model of equations (2) has little
practical use unless it is reduced to a manageable size
without sacrificing accuracy.

Model order reduction has been a major topic in
systems theory for decades. Various kinds of techni-
ques have been developed since it first appeared in the
late 1960s [6-8]. Pade approximation, modal approx-
imation and continued fraction expansions were the
typical methodologies in the beginning. Singular per-
turbation was also applied to model reduction [9].
Singular perturbation is very similar to the dominant
mode technique in the sense of separating the modes
based on their ‘fastness’ [9]. The balanced realization
technique is applied to the model reduction by Moore
[10]. The method is based on measures of controll-
ability and observability of the system. The most
controllable and observable portion of the dynamics is
used as a low-order approximation for the model. In
this section, three different kinds of model techniques
are applied to the quarter-car with a brief review of
each method.

2.3.1 Reduced-order model using a dominant mode
technique (model 1)

To the linearized model of equations (2), a modal
transformation (using x = T,z,) can be applied to
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Fig. 4 The comparison of road input responses (original model and its linearized model)

obtain a decoupled modal state space equation.
im =T ' ATnzm + T ' Bu+T,'Gw
= Anzm + Bnu + Guw (5a)
y=CTpnzm = Cnzm (5b)

where
Am 11 Am 12 Bm 1
Am = s Bm =
Am2t Am2 B

Gml
Gm = s Cm = [le Cm2]
Gm2

Each block matrix is divided into slow modes and fast
modes based on the magnitudes of eigenvalues. Then,
the following reduced-order linear system (m x m) is
obtained by neglecting the fast modes:

e = Arzr + Bou + Gyw

= Ani1%r +Bmitt + Guw (6a)
y=0Cz; =Cnizr (6b)
where
% € mmxl

By eliminating the least dominant modes (with the big-
gest eigenvalues) one by one, a reduced-order model

D06999 © IMechE 2000

(model I) with four states can be obtained as follows.
When m is smaller than 4, there is a significant difference
between the responses of the two systems [i.e. Equations
(2b) and (6b)]. The process results in the following sys-
tem matrices:

—1.3438 x 10°  6.9834 x 10°
—6.9834 x 10° —1.3438 x 10°
A, =
0 0
0 0
0 0
0 0
—8.4582 x 10°  5.1584 x 10!
—5.1584 x 10! —8.4582 x 10°
—9.2749 x 1073 —3.1578 x 102
—2.2295 x 1073 6.2705 x 10!
B, = ., G, =
+5.3175 x 1072 —1.5590 x 10*
—2.6143 x 1072 6.7116 x 103
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and

—4.0800 x 1073 2.0760 x 1072

—1.3949 x 107! —5.6389 x 1072

C =

—1.3179 x 1073 2.0221 x 1073

—1.2350 x 1072 —1.1921 x 1072
2.2538 x 107 1.4005 x 10~*
—9.1307 x 1073 1.0441 x 102
1.1612 x 1073 2.5770 x 1073
—1.4275 x 107" 3.8102 x 1072

The eigenvalues of the reduced-order system are as fol-
lows:

Jia=—1.3438 £i6.9834 (= f, = 1.1318 Hz)

J34 = —8.4582 £i51.584 (— f, = 8.3194 Hz)

Figure 5 shows the corresponding two modes of the
reduced-order model, which clearly reflect body boun-
cing and wheel hopping.

2.3.2  Reduced-order model using balanced realization
technique (model 1I)

From equation (2), a ‘balanced’ system is obtained using
a similarity transformation g, = Tyx:

o = ToAT 'z + TpBu + Ty Gw
= Apzp + Bpu + Gpw (7a)

y= CTF,IZb = Cp2p (7b)

:

(a) Mode 1 at frequency =1.13 Hz

For the balanced system, the Grammian matrix, W,
satisfies the Lyapunov equations, i.e.

WA + AW = —B;B{ (8a)

WA, + AW = —C[C, (8b)

Equations (8) mean that the relationships from input to
states and from states to output are internally balanced.

Here, the ‘dominance’ of a state is determined by the
singular values of the Grammian matrix of the balanced
system. Figure 6 shows its distribution for the balanced

Singular values for
the dominant states

singl-JI.a.r-v-a-lL-Jé-o-f W

R T 10 15 20 25 30 35
Number of singular value

Fig. 6 The distribution of the singular values of W for the
balanced system

(b) Mode 2 at frequency = 8.30 Hz

Fig. 5 Two mode shapes remaining in the reduced-order model
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system. Each matrix is divided into the dominant and and
non-dominant states as follows: 9.5029 % 103 —1.0094 x 10~2
58675 x 1072 7.9504 x 102
Api1 Api2 By, C =
Ap = , By, = 7.2478 x 1074 —1.6863 x 103
A Apn By
9.4795 x 1073 3.0739 x 103
Gy,
Gy = |: :| Cp, =[Cyi  Cpa] 1.6416 x 1074 —1.2237 x 1073
G2

—6.1832 x 1072 2.0441 x 102

-3 -3
Then, the following 4 x 4 reduced-order linear system —8.5627 x 10 —9.1197 x 10

(model II) is obtained by neglecting the non-dominant —4.1597 x 10-! 53181 x 10-!
states one by one until there is marked difference of

responses between the two systems:
2.3.3  Reduced-order model using singular perturbation
(model I11)

.r = Ar r Br Gr o .
: & + B+ Grw In order to fit the steady states of the original system

= Ap11zr + Boi 4+ Gy w (9a) and the reduced-order system, the following correction
using the singular perturbation technique is added.
y=0Cizr = Coi12r (9b) By introducing a small parameter, u, to the second

part (non-dominant portion) of the system equation, the
system equations are changed to

where xr All AIZ .ifr Bl Gl
. = . + u + W
nq Ay Axn | ug B, G

Zr c E)'tmxl
(10)

. where
The numerical results are

x; € W is the state vector of the dominant portion
q € W7 is the state vector of the non-dominant

—10161 X 100 70313 X 100 portion

—7.0364 x 10° —1.6972 x 10° By giving a perturbation u — 0, the system order drops
A= 0 o to m. Then, the second part of Equation (10) becomes

—1.8690 x 107 —2.8603 x 10 the steady state relationship between x, and q. Finally,

using the algebraic relationship, the first part of the

0 0
1.9409>10 3.2291 x 10 differential equation (10) becomes a reduced-order sys-

3.3967 x 1071 2.2935 x 10~ tem:

1.0831 x 107" —1.3293 x 10° Zr = Avzr + Biu+ Gow (11a)

—6.5056 x 100 —5.1431 x 10! y=Cz; + D+ Ew (11b)
where

5.1524 x 10! —1.0287 x 10!
A =Aj — ApAY Ay, B, =B, — ApAL'B;

G, =G| — A12A£21G2

9.5305 x 1073 4.8671 x 10? O =
Cr = C] — C2A22 A21, Dr == —C2A22 B2
1.0234 x 1072 1.0913 x 10? |
B, = , Gy = E, = -CAL, Gy
8.5643 x 1073 —2.6819 x 10° ] ) )
If the technique is applied to the balanced system, the
—9.2014 x 1073 2.5163 x 103 following reduced-order model is obtained. Notice that

D06999 © IMechE 2000 Proc Instn Mech Engrs Vol 214 Part D
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two non-zero matrices, D, and E,, show the effect of

inputs on the output states:
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Z1.0161 x 10°  7.0313 x 10°
~7.0363 x 100 —1.6970 x 100
A 8596 x 100 —2.8457 x 10°
19545 x 100 3.2502 x 10°
3.3992 x 10~1 2.2900 x 10~
1.0918 x 10~!  —1.3308 x 10°
64392 x 10°  —5.1531 x 10!
51623 x 10! —1.0430 x 10!
9.5303 x 10-3 48672 x 102
10234 x 10~ 10930 x 107
B, = G
8.5205 x 10~ 26724 x 10°
926541 x 103 2.5303 x 10°
9.5023 x 10~ —1.0095 x 102
58675 x 102 7.9504 x 102
| 73088 x 104 16768 x 103
92282 x 10~ 2.6840 x 10~
15961 x 104 —1.2171 x 103
62100 x 107 1.9913 x 10~
—8.5190 x 10~ —9.1848 x 103
41558 x 101 5.3877 x 10!

and
2.9348 x 10~° —5.3280 x 1074
—3.8509 x 10~10 —1.2952 x 1072
Dr = , Er =
—2.8622 x 108 6.2526 x 1073
1.1870 x 10~ —2.4063 x 1072

2.3.4 Comparison

In order to compare the results using these techniques,
eigenvalues of the reduced-order models are listed in
Table 2. The results show that there is no significant
difference among all three techniques. However, this is
not always true for the general case. In this specific case
for the quarter-car system, the dominant mode (based
on eigenvalues) coincides with the most controllable and
observable states.

Figures 7 and 8 show the comparisons of the original
system and the reduced system for actuator input and
road displacement input. Since it is hard to distinguish
three reduced-order models, there is only one reduced-
order model (model II) shown in the figures. On the
basis of the results, it can be said that the reduced-order
model with four states represents the original system
with considerable accuracy for both control input and
road displacement input.

3 EQUIVALENT PARAMETERS FOR TWO-
MASS MODEL

From the result of Section 2, it is observed that the size
of the reduced-order model is as small as that of the two-
mass model with no apparent sacrifice in accuracy. In
this section, the relationship between the reduced-order
model and the two-mass model is investigated. The goal
is to obtain a set of equivalent parameters for the two-
mass model such that its response is as close to the
reduced-order model as possible. In this way, the effec-
tiveness of the two-mass model structure can be verified.
The system matrices of the two-mass model are

X =Ax+Bu+Gw (12)

Table 2 Eigenvalues of reduced-order models using three different model

reductions
Model 1 Model II Model IIT
A (fa (Hz)) —1.3438 £ j6.9834 —1.3436 £ j6.9834 —1.3438 £ j6.9834
(1.1318) (1.1318) (1.1318)
A4 (fo (Hz)) —8.4582 + 51.584 —8.4092 + 51.497 —8.4472 + 51.593
(8.3194) (8.3045) (8.3205)

Proc Instn Mech Engrs Vol 214 Part D
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where

. . 4T
X =z Z, zy Z]

0 1 0 0
—ks/ms  —bs/my kes/my bs/my
A=
0 0 0 1
L ks/mu bs/mu _(ks + kt)/”nu _bs/mu
-0 0
1/mq 0
B == y G =
0 0
L _l/mu kt/mu

In order to express the reduced-order model with the
same state vector, another similarity transformation is
applied to the model. Using x = C;z;, equation (12)
becomes

¥ =CAC 'x + CBu+ C.Gw
= Ax + B+ g w (13)

In the case of model I, the transformation results in

0 1
B —2.3609 x 10" —1.4383 x 10°
A, =
0 0
3.0609 x 10> 1.7931 x 10!
0 0
—2.3255 x 10> 1.4240 x 10°
0 1
—2.7796 x 10° —1.7713 x 10!
0 4.1764 x 1073
. 6.5522 x 10~* } 2.5450 x 10?
Br = s Gr =
0 1.8551 x 107!
—8.3341 x 1073 2.4587 x 103

The reduced-order model includes the effect of suspen-
sion geometric characteristics (e.g. the lengths of links,
etc.) while the two-mass model does not. Therefore, the
difference of the model structures for the two systems is
not surprising. Notice that the simple relationships
among the elements of A do not hold for A,. For
example, A;(2,2) is not equal to —A(2,4) while A(2,4) is
equal to —A(2,2). Therefore, it is not easy to obtain

Proc Instn Mech Engrs Vol 214 Part D

equivalent parameters by matching the system matrices
of reduced-order system and two-mass model element
by element. There can be many different results of
parameter estimation depending on the choice of ele-
ments. Instead, a comparison of the characteristic
equations of two systems is used to obtain the equivalent
parameters in the present study.

From the equation of motion for the two-mass sys-
tem, the transfer function from the actuator control
force, u , to the suspension deflection, z; — z,, is derived
as

zg(s — zy(s)  (ms+ my)s? /mgmy + ki /(msmy)

14
u(s) A (14)
where A is the characteristic polynomial
A=st+ <M bs>s3 + ms(ks + ki) + muks 2
mgshny mginy
bk kk
* ¥ e (15)

mshy mghy

The same transfer function for the reduced-order model
is calculated using the result of Section 2.3:

Zy—Zy _ bys* + bys + by
u st + azs? + ars? + ars + ag

where, the coefficients of the transfer function for three
different reduced-order models are given in Table 3:

By matching the coefficients of the two transfer
functions, an algorithm is developed to calculate a set of
equivalent parameters (see Appendix for more detail):

(16)

ks = ao/bo (17a)
by = a1 /by (17b)
st = [az — (as/bs) /Ks) /b (17¢)
iy = 1/(as/bs — 1/1y) (17d)
ki = borgin, (17¢)

Using the algorithm, equivalent parameters for three
reduced-order models are obtained (Table 4). As can be
expected, the three models produced similar results since
their characteristic equations are almost the same. Notice

Table 3 The coefficients of the transfer function for different
reduced-order models

Model 1 Model II Model IIT
Coefficients (modal tech) (bal +del) (bal +mdc)
a3 1.9604 x 10! 1.9506 x 10! 1.9582 x 10!
@ 2.8284 x 10 2.8184 x 10° 2.8291 x 10°
ay 8.1991 x 10° 8.1670 x 103 8.2000 x 103
a 1.3819 x 10° 1.3769 x 10° 1.3823 x 10°
by 9.0634 x 1073 9.0183 x 107> 9.0533 x 1073
by —8.7859 x 107%  —3.8264 x 107* —9.5776 x 10~*
by 3.7822 3.7676 3.7823
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Table 4 Equivalent parameters for different reduced-order models

Estimated Component
parameters Model 1 Model I1 Model II1 data

kg (N/m) 36537 36 546 36543 37278

bs (N's/m) 2167.8 2167.7 2167.9 3000

s (kg) 660.48 660.78 660.68 404

iy, (kg) 132.82 133.60 132.99 45.24

k¢ (N/m) 331790 332610 332350 186390

that some identified parameters are very far from the
component data (e.g. m, i, and k). The discrepancies
between the component data and the identified para-
meters clearly show the possible inaccuracy of the nom-
inal simple model. In other words, the nominal model
without considering the suspension geometric structure
has ‘invisible’ parameter uncertainties.

System responses of the two-mass model with the
identified parameters are compared with the ones of the
reduced-order model in Figs 9 and 10. The results show
that there is little difference between two responses.
From the results, it is pointed out that the model
structure of the two-mass model is sufficiently effective
to represent the quarter-car system. However, deter-
mining an accurate set of parameters is very crucial.

4 EXPERIMENTAL WAY OF OBTAINING
EQUIVALENT PARAMETERS

In Section 3, the transfer function from the control input
to the suspension deflection was calculated from the
reduced-order model. Notice that the transfer function
can also be obtained from the experimental set-up using

0.05

m

E 0.04
0.03 }
0.02

0.01

displacement of m

0 1 2
3 time(sec)

2x10

displacement of m (m)

-6

0 0.5
time(sec)

a system identification method. That is, coefficients of
the same transfer function are obtained using two sets of
measured signals. Then, equations (17) can be used to
obtain the set of equivalent parameters.

This process is very important considering that not all
suspension component data are available to build a
complex multibody dynamic model. Without an accu-
rate complex model, needless to say, it is very difficult to
obtain an accurate reduced-order model.

In order to demonstrate the feasibility of this
approach, the original ADAMS model is used to gen-
erate two signals for the system identification. The sus-
pension deflection response from the control force input
is shown in Fig. 11.

Using the ARX function in MATLAB, the following
transfer function with order 4 is obtained:

Zy—Zu 5.6539 x 1076s% + 3.7693
u S 1.9517 x 1015° 4 2.8196 x 10°s?
+8.1708 x 103s + 1.3775 x 103

(18)

Figure 12 shows the comparison of the responses
between the original and the identified model.
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-0.15
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Fig. 9 The comparison of actuator input responses (original model versus identified two-mass model)
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Fig. 10 The comparison of road input responses (original model versus identified two-mass model)
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Fig. 12 The comparison of responses of the original system

and identified (ARX) model
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Notice that there are no real differences in the coef-
ficients of the transfer function compared with the one
in equation (16). The only difference is in the second-
order term, by, in the numerator, which makes the dif-
ference in the responses in Fig. 12.

Using equation (18), similar results for identified
parameters can be obtained. Table 5 shows the com-
parison of identified parameters with the reduced-order
model and ARX model. The results show that the
experimental way produces very accurate equivalent
parameters for the two-mass model.

Figure 13 shows the actuator step responses for three
different systems (the original system, two-mass model
with the identified parameters and with nominal para-
meters). The result clearly shows the benefits of para-
meter identification in constructing the two-mass model
for a quarter-car system. The identified two-mass model
is very close to the original model. On the other hand,
the nominal model (dotted line) is far from the original
system.

5 EFFECT OF SUSPENSION STRUCTURES ON
THE EQUIVALENT PARAMETERS

In the previous sections, a set of equivalent parameters
for a double wishbone type suspension system was
obtained. Now, the same procedure is followed for the
MacPherson-type suspension system. This is done in
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Table 5 The equivalent parameters from a reduced-order model and an ARX

model with component data

ke (Nfm) b (Ns/m) g (kg) s (ke) ko (N/m)
Model 1 36537 2167.8 660.48 132.82 331790
ARX model 36 546 2167.8 660.76 133.52 332530
Component data 37278 3000 404 45.24 186 390
004 . : ; . - The identified values of the suspension parameters for
z the system are shown in Table 6. In order to see the
oot effect of the joint properties (e.g. kinematic joints or
g | i e nominal two mass model bushing), both the kinematic model and the compliance
Zow model are used. In the kinematic model, all connecting
5 elements are modelled as kinematic joints (e.g. revolu-
éam VA — Id. two mass model tional joint, universal joint, spherical joint, etc.). In the
a —— original model compliance model, the lower arm and the strut are
2] y . .
0 s s s . . attached to the car body with bushing elements.
0 05 1 15 2 25 3

time(sec)

Fig. 13 The comparison of the responses (the identified two-
mass model, nominal two-mass model and the
original system)

order to demonstrate the effect of the suspension kine-
matic structure on the equivalent parameters.

The MacPherson-type suspension system is one of the
most popular systems adopted for passenger car front
suspension. An ADAMS model for the system is shown
in Fig. 14.

Fig. 14 MacPherson-type suspension system

Notice that there is little difference between each set of
parameters for the MacPherson-type suspension (Table
6) compared with the result for the double wishbone
type suspension system (Table 4). This result can be
inferred from the fact that the structure of MacPherson-
type suspension is very similar to the structure of the
two-mass model; i.e. the relative motions of the sprung
mass and the unsprung mass are almost coaxial in the
MacPherson-type suspension [5].

6 CONCLUSIONS

In this paper, an accurate reduced-order model for a
quarter-car suspension system is obtained. Linearization
and model reduction techniques are used to find the
reduced system from a complex quarter-car model.
Using the approach described in the paper, a suspension
model even with complex linkage layouts can be reduced
to a simple model with reasonable accuracy.

On the basis of the results of model reduction, a set of
equivalent parameters of the typical two-mass model is
identified. The results reveal that the two-mass model is
effective in representing a quarter-car system as long as
an accurate set of identified parameters is determined.
To this end, a convenient procedure to calculate the
equivalent parameters from the characteristic equation
of the reduced system is proposed.

Table 6 Identified equivalent parameters for a MacPherson-type suspension

system
ks (N/m) b (Ns/m) i (kg) i (kg) ko (N/m)
Kinematic model 22856 2758.9 43451 34.461 195920
Compliance model 25017 2745.1 435.0 32.432 195870
Component data 21562 2940 404 42.0 186220
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An experimental way to obtain the equivalent para-
meters is suggested. It is based on system identification
using two measured signals of the actuator input and
suspension deflection.

Finally, the effect of the suspension structure on the
equivalent parameters is investigated. The result shows
that the identification process is essential for a complex
suspension system such as the double wishbone type,
whereas the benefits are not fully realized for less com-
plex systems such as the MacPherson type.

An accurate reduced-order model may provide a more
efficient way of designing a control system than a
nominal model; i.e. the tuning process after applying the
control system to the real system can be reduced. This
may reduce the time and cost in the process of designing
a control system.

The same technique may be extended to a full-car
model for ride and handling analysis. If tyre lateral and
longitudinal properties are included, a more accurate set
of equivalent parameters may be obtained. Also, treat-
ing non-linear characteristics of the reduced-order sys-
tem (e.g. asymmetric damping rate, non-linear spring
stiffness, etc.) would be an interesting topic for obtaining
more accurate simple models.
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APPENDIX

An algorithm to calculate equivalent parameters for the
two-mass system

The transfer function from the actuator control force, u,
to the suspension deflection, zg — z,, for the two-mass
system is as follows:

Zs — Zu _ (ms + mu)sz/(msmu) + ki/(mgmy)

” A (19)
where
A—sty (M bs)g
mshiy
i m(ks + ki) + myks 2 + bsby s+ ks (20)

mshy msniy msniy

The same transfer function calculated from the reduced-
order model is as follows:

Zs — Zu bys* + bys + by
= (21)
u st 4 a3 + ars? + ays + ag
1. Matching the steady states of zgs(t = 00),
b()/a() - 1/k57
A ap
A 22
= 22)
2. From aqy = lgskt/(msmu),
kt ap a
2 =b 23
MsMy e ao/bo ’ *)
3. From a; = Eskt/(msmu)7
bdey  ~
ay = —— = bby (24)
Mgty
or
N ap
b. = —L 25
= (25)
4. From az = [(ms + my)/(msmy)]bs,

mghiy b,

5. From [(ms + my)/(msmy)lks + mski/(msmy) = as,

ms< ki ) —ay— <@>k 27)
msny bs

or

( ki ) a — (a3/l;‘\')]€s
m =

mshiy by

(28)

6. From (ms +my)/(msmy) = 1/my + 1/mg = a3/53a
. 1
nmy = ————(29)
ay/bs — 1/my
7. From the result of step 2,
ke = borigiing (30)
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