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Abstract: The well-established quarter car representation is used to investigate the design of an active

suspension system for a racing car. The work presented is from both a practical and theoretical study. The

experimental open-loop and passive responses of the suspension system are used to validate the model and

estimate the level of damping within the system. A cascade control structure is used, consisting of an inner

body acceleration loop and an outer ride height loop. Comparisons are made between the experimental

results and those predicted by the theory.

During the 1980s and early 1990s a number of Formula 1 teams developed active suspension systems to

improve the performance of cars. Little detail was published about these systems because of the highly

competitive nature of the application. Some of these systems were very sophisticated and successful.

Because of this, speed increased considerably and because of the costs involved, the difference in

performance between the lower and higher funded teams became unacceptable. For this reason, the

governing body of motor sport decided to ban active suspensions from the end of the 1993 racing season.

Both authors of this paper were involved with different racing teams at that time, and this paper is an

introduction to the very basic philosophy behind a typical active system that was employed on a Formula 1

car.

Keywords: active suspension, modelling, simulation, design, testing

NOTATION

a area (m2)

A B C D state space matrices (system, input, output and

transmission respectively)

d diameter (m)

j
pÿ1

k stiffness (N=m)

K controller gain

m mass (kg)

P pressure (N=m2)

qi flow rate input to the active suspension actuator

(m3=s)

R damper valve flow restriction coefficient

(N s=m5)

u x y state space vectors (input, state and output

respectively)

x coordinate (m)

ç coordinate for mechanical spring piston (m)

Subscripts

1 actuator volume 1 (see Fig. 1)

2 actuator volume 2 (see Fig. 1)

d relating to the mechanical spring

p suspension strut piston

s body or sprung mass

t tyre

u unsprung mass

z ground input

1 INTRODUCTION

The design of a suspension system for a racing car must

maintain the ride height and attitude of the vehicle within set

limits, so that the aerodynamic (down) force acting on the

vehicle remains relatively constant for a given velo-

city. In this paper the ride height refers to the relative

displacement between the body and unsprung mass, though

it should be noted that for a Formula 1 car the tyre deflec-

tion can have a significant effect on the height of the body

from the ground. It is possible for the aerodynamic force to

be over twice the static weight of the vehicle and this is

161

The MS was received on 4 September 1995 and was accepted for
publication on 25 June 1996.

D04195 # IMechE 1997 Proc Instn Mech Engrs Vol 211 Part D



further complicated by the forces generated during braking,

accelerating and cornering. To accommodate these large

changes in force acting on the car, it is necessary to have

high body natural frequencies, in some cases over 5 Hz.

One method of overcoming this problem is to use an active

suspension system which is capable of maintaining the ride

height and attitude of the vehicle at their optimum con-

ditions, while reducing the natural frequencies of the body.

The suspension system of a racing car is set up for each

race, thus a control law for the active suspension system

must be simple and the effect of changing the gains easily

understandable. This requirement eliminates many of the

modern control techniques (1±3) on the grounds of com-

plexity, the controller possibly having to be redesigned for

each vehicle set-up. It is also difficult to relate the pole

positions or open-loop frequency response to suspension

performance.

Many of the classical control laws proposed in the

literature (4±8) make use of measurements of body accel-

eration and ride height because of the ease with which these

parameters can be measured. One commonly used control

law (4±7) uses ride height and absolute body velocity, which

is obtained by integrating the body acceleration. One of the

reasons for using body velocity is to achieve sky-hook

damping, but it should be appreciated that body acceleration

feedback with a hydraulic actuator will achieve the same

aim. This is the case with this particular study.

Two types of actuator are normally used for an active

suspension system (8). The first is a double acting ram either

alone or in parallel with passive suspension components.

The second is a single acting ram acting in series with

passive suspension components. With the second confi-

guration it is common for the passive suspension elements,

compliance and damping to be incorporated into the

actuator. The first type of system requires a greater band-

width from the controller because it has to control all of the

body and unsprung mass modes. For the second type of

system, the higher frequency modes associated with the

unsprung mass are controlled by the passive suspension

characteristics, while the low-frequency modes and ride

height are controlled by the actuator and suspension con-

troller. This requires a lower bandwidth from the controller.

The second of these types of suspension actuator was used

on a Formula 1 system which was familiar to the authors,

and has therefore been selected for investigation in this

paper.

All modelling of the suspension system and controller

design has been performed using linear theory. The paper

describes a simple theoretical representation of the system,

experimental work on a quarter car rig and a comparison of

the results.

2 DESCRIPTION OF THE ACTIVE SUSPENSION

SYSTEM

The main component of the active suspension system under

consideration was an actuator, originally designed and

developed for a Formula 1 application. This is shown

diagrammatically in Fig. 1. The actuator consisted of three

major elements; a piston, disc type damping valve and a

mechanical spring. The piston used low-friction polytetra-

fluoroethylene (PTFE) guides and seals to reduce the

effects of non-linear friction. The damper valve controlled

the level of passive damping within the suspension system.

This was achieved by directing the oil through different

flow paths in bump and rebound using two sets of shims.

For the case under investigation, the two sets of shims

were identical. Compliance was incorporated into the

actuator via a piston and mechanical spring. A mechanical

spring was preferred in this application to a possible gas

spring (8) because of the effect of temperature change.

Hydraulic fluid was fed into the actuator from a single

servovalve between the damper valve and mechanical

spring. An additional port was provided to allow the

actuator to be bled during setting up. A displacement

transducer was incorporated into the actuator to measure

the relative displacement between the body and unsprung

mass (ride height). The actuator was located in the

suspension system, between the body and unsprung mass,

by rod ends at its top and bottom. An on=off valve,

included between the servovalve and the actuator, allowed

the suspension system to be operated in both passive and

active modes.

Fig. 1 Mathematical model of the quarter car suspension

model
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3 THEORETICAL QUARTER CAR SUSPENSION

MODEL

The quarter car suspension model is shown in Fig. 1. The

equations of motion for the system have been derived under

the following assumptions:

(a) the hydraulic fluid is incompressible;

(b) the flow through the damper valve is proportional to

the pressure difference across it;

(c) the mechanical spring has been linearized about its

nominal operating point;

(d) seals and guides are frictionless;

(e) all coordinates and parameters are measured from their

static positions;

(f) no leakage occurs from the system.

The equations for the system have been developed for the

following inputs; flowrate from the servovalve (qi) and

ground profile displacement (xz). The system outputs are

ride height (xs ÿ xu), body acceleration (�xs) and unsprung

mass acceleration (�xu).

Applying Newton's laws of motion to the body and

unsprung masses gives

ms�xs � P2ap (1)

mu�xu � kt(xz ÿ xu)ÿ P2ap (2)

where ms and mu are the body and unsprung masses, aa is

the piston area, P2 is the pressure acting on the piston area

and kt is the tyre stiffness.

Flow continuity in volume 1 gives

qi � _çad � (P1 ÿ P2)=R (3)

where P1 is the pressure acting on the mechanical spring

piston area as, ç is the coordinate for the mechanical spring

piston and R is the damper valve flow restriction coeffi-

cient.

The change in pressure in volume 1 is given by

P1 � çkd

ad

(4)

where kd is the stiffness of the mechanical spring.

Flow continuity in volume 2 gives

(P1 ÿ P2)=R � ( _xs ÿ _xu)ap (5)

By manipulating equations (1) to (5) the mathematical

model of the active suspension system can be written in

state space form as

_x � Ax� Bu

y � Cx� Du

(6)

where

xT � [xs _xs xu _xu P1] (6a)

u � qi

xz

� �
(6b)

y �
xs ÿ xu

�xs

�xu

24 35 (6c)

A �

0 1 0 0 0

0
ÿRa2

p

ms

0
Ra2

p

ms

ap

ms

0 0 0 1 0

0
Ra2

p

mu

ÿkt

mu

ÿRa2
p

mu

ÿap
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0
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ad
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d

0

2666666666666664
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(6d)

B �

0 0

0 0

0 0

0
kt

mu
kd

a2
d

0

2666666664

3777777775
(6e)

C �

1 0 ÿ1 0 0

0
ÿRa2

p

ms

0
Ra2

p

ms

ap

ms

0
Ra2

p

mu

ÿkt

mu

ÿRa2
p

mu

ÿap

mu

2666664

3777775 (6f )

D �
0 0

0 0

0
kt

mu

2664
3775 (6g)

The servovalve was modelled with a second-order transfer

function, which for a 40 per cent input signal and a supply

pressure of 120 bar gives a natural frequency of 90 Hz and

a damping ratio of 0.7 (9). The data for the suspension

system are given in Table 1.

Table 1 Suspension system parameter values and trans-

ducer calibration factors

Suspension model parameter Value

ms 180 kg
mu 23 kg
kd 300 kN=m
kt 233 kN=m
dd 0.030 m
dp 0.028 m
Accelerometers 0.102 V=�m=s2)
Displacement transducer 180.5 V=m
Servovalve flow coefficient 4.7 3 10ÿ5 m3=s
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4 EXPERIMENTAL MEASUREMENTS

A photograph of the experimental quarter car rig is shown

in Fig. 2. The experiments consisted of passive, open-loop

and closed-loop testing. The purpose of the passive and

open-loop testing was to validate the model and to select a

suitable coefficient for the damper valve restrictor. This is

described first.

All of the testing was performed using a Solatron 1250

transfer function analyser between 1 and 30 Hz in 149

steps. It may be noted that on the figures, the solid line

represents the experimental results.

4.1 Passive testing

The passive responses were obtained by closing the valve

between the actuator and the servovalve. The input to the

suspension was via a hydraulic actuator under displacement

control, see Fig. 2. The measured outputs were the body

acceleration, unsprung mass acceleration and the ride

height. For comparison with the measured outputs, an

accelerometer was used on the ground input.

The responses for the body and unsprung mass accelera-

tion for variations in ground input amplitude are shown

in Fig. 3a and b, and for the ride height in Fig. 3c.

Fig. 2 Active suspension test facility

Fig. 3a Passive frequency response (body acceleration=
ground acceleration), three-dimensional fre-

quency and ground amplitude versus gain

Fig. 3b Passive frequency response (unsprung mass ac-

celeration=ground acceleration), three dimen-

sional frequency and ground amplitude versus

gain

Fig. 3c Passive frequency response (ride height=ground

acceleration), three-dimensional frequency and

ground amplitude versus gain
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At low-amplitude inputs, the non-linear friction causes the

actuator to lock out, thus reducing the peak amplitude at

the resonances. For a ground input of 2.5 mm the responses

for the body, unsprung mass acceleration and ride height

are shown in Fig. 4. All these responses show resonances at

4 Hz (the bounce frequency) and 20 Hz (the wheel hop

frequency). A weak anti-resonance (zero) for the unsprung

mass occurs between 6 and 7 Hz. This is possibly masked

by the non-linear friction or level of passive damping, see

the Appendix. This anti-resonance is caused by the body on

the effective actuator stiffness: this natural frequency is

given by
p

(a2
p kd=a2

d ms) � 35:6 rad=s or 5.7 Hz.

4.2 Open-loop testing

The open-loop testing was performed by applying an input

voltage to the servovalve current amplifier and monitoring

the response of the ride height, body acceleration and

unsprung mass acceleration.

It is well known that during this form of test, actuator

drift has to be compensated for. However, compensating for

actuator drift by simple continuous feedback regulators can

affect the validity of the results (10). This was overcome by

implementing a proportional controller around the strut

extension with a constant gain. At each second, the error

Fig. 4b Passive frequency response gain (unsprung mass acceleration=ground acceleration), experi-

mental 2.5 mm input (solid line), theoretical R � 1 3 1010 (dashed line) and theoretical

R � 0:5 3 1010 (dotted line)

Fig. 4a Passive frequency response gain (body acceleration=ground acceleration), experimental

2.5 mm input (solid line), theoretical R � 1 3 1010 (dashed line) and theoretical R � 0:5 3
1010 (dotted line)
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was calculated and a constant correction signal was applied

for the next one second period. Thus, the suspension

system was open-loop except when the corrective action

was taken every second to prevent the actuator reaching the

limits of its stroke. This technique proved very effective

during this part of the testing and only with the largest

input did the suspension come close to the limits of its

travel.

The effects of increasing the amplitude of the input

voltage on the ride height and body acceleration are shown

in Fig. 5a and b. For both responses the effect of non-linear

friction is seen again clearly on the 0.1 to 0.3 V [root mean

square (r.m.s.)] input responses by the reduced resonant

peak at 4 Hz. Once the input amplitude exceeds 0.4 V

(r.m.s.) the gain at resonance remains constant, as would

be expected. For an input amplitude of 0.5 V (r.m.s.) the

open-loop responses for the ride height, body acceleration

and unsprung mass acceleration are given in Fig. 6.

The open-loop response for the ride height, Fig. 6a,

shows a resonance (complex conjugate pole pair) at

approximately 4 Hz and an anti-resonance (complex con-

jugate minimum phase zero pair) at about 5.4 Hz. The

zeros are a resonance of a constrained substructure (11)

and in this case represent the body and unsprung mass

Fig. 4c Passive frequency response gain (ride height=ground acceleration), experimental 2.5 mm input

(solid line), theoretical R � 1 3 1010 (dashed line) and theoretical R � 0:5 3 1010 (dotted

line)

Fig. 5a Open-loop frequency response (ride height=
input), three-dimensional frequency and input

versus gain

Fig. 5b Open-loop frequency response (body accelera-

tion=input), three-dimensional frequency and in-

put versus gain
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being locked together. The phase starts at 908; this indi-

cates the presence of a single integrator, which is borne

out by the low-frequency slope of the gain relationship

(ÿ20 dB=decade). Thus the transfer function for this

response will be type 1, see the Appendix. The maximum

phase lag, between 1 and 30 Hz, is 2208 and occurs at about

5 Hz. The anti-resonance occurs at the natural frequency

of the total mass (body and unsprung) acting on the tyre;

this is given by
p

[kt=(ms � mu)] � 33:9 rad=s or 5.4 Hz,

which is close to that measured experimentally.

The open-loop response for the body acceleration,

Fig. 6b, shows a resonance at approximately 4 Hz and an

anti-resonance at 16.6 Hz. The phase starts at �908 which

indicates a single differentiator, this is also borne out by

the low-frequency slope of the gain relationship. Thus, the

transfer function for this response will be type ÿ1, see the

Appendix. The maximum phase lag, between 1 and 30 Hz,

occurs at about 16 Hz and is approximately 1208. The anti-

resonance occurs at the natural frequency of the unsprung

mass acting on the tyre (body restrained) and is given byp
(kt=mu) � 100:7 rad=s or 16.0 Hz, this is 0.6 Hz less

than that measured experimentally and is probably caused

by the level of passive damping in the system. Note that

this is not the same as wheel hop. The open-loop responses

for the unsprung mass acceleration are shown in Fig. 6c.

These again show a resonance at 4 Hz and no zeros.

4.3 Closed-loop testing

The results from the passive and open-loop testing de-

scribed above were used to select a suitable coefficient for

the damper valve flow restrictor. This was essential for the

controller design. A comparison between the experimental

and theoretical responses is given below. The mathematical

model developed was used to design a controller for the

Fig. 6a Open-loop frequency response gain (ride

height=input) (top), and open-loop frequency

response phase (ride height=input) (bottom),

experimental 0.5 V (r.m.s.) input (solid line),

theoretical R � 1 3 1010 (dashed line) and theo-

retical R � 0:5 3 1010 (dotted line)

Fig. 6b Open-loop frequency response gain (body accel-

eration=input) (top) and open-loop frequency

response phase (body acceleration=input) (bot-

tom), experimental 0.5 V (r.m.s.) input (solid

line), theoretical R � 1 3 1010 (dashed line) and

theoretical R � 0:5 3 1010 (dotted line)
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active suspension system, which was tested on the quarter

car suspension test facility.

5 THEORETICAL RESPONSES

The initial problem was to select an appropriate value of

damper valve restrictor. This was done by fitting the

theoretical responses to those from the experimental sus-

pension system. Using this method, two possible values

for the restrictor were obtained. One from the open-loop

responses (R � 1 3 1010) and one from the passive re-

sponses (R � 0:5 3 1010). A comparison between the

open-loop and passive experimental and theoretical re-

sponses for the two values of restrictor are shown in Figs 4

and 6. These show that for frequencies less than 10 Hz the

open-loop responses are more accurately modelled by the

higher level of damping, while the lower level of damping

more accurately represents the passive responses. There is

also an indication from the plots that the level of damping

is frequency dependent and reduces at higher frequency. A

parameter locus of the poles of the model for variations in

restrictor value is shown in Fig. 7, with the two possibilities

highlighted. This plot shows that the damper valve re-

strictor has greatest effect on the higher frequency (wheel

hop) mode, while the lower frequency (body) mode reaches

a maximum possible damping ratio of approximately 0.17.

The increase in the effective damping of the open-loop

responses is thought to be caused by the flow losses in the

pipe between the servovalve and actuator.

The value of flow restriction measured in the open-loop

tests was selected for use in the mathematical model,

because the open-loop responses have a direct relationship

to the stability when the system is run in closed loop. This

is especially so at low frequencies, where the gain and

phase crossover frequencies will occur. This results in a

damping ratio of approximately 0.7 for the higher fre-

quency (wheel hop) mode and 0.1 for the lower frequency

(body) mode.

6 CONTROLLER DESIGN

The requirement was for a simple controller structure

which allowed control over the primary functions of the

suspension system. The three primary functions of the

suspension in this situation are:

(a) to control the ride height;

(b) to minimize the tyre force variation;

(c) to improve the ride quality.

The classical structure often selected for an active suspen-

sion system (4±7) has ride height and absolute body

velocity being fed back. It is also well established that

in the design of a control system, acceleration feedback

is also capable of enhancing the level of damping. An

Fig. 6c Open-loop frequency response gain (unsprung

mass acceleration=input) (top), and open-loop

frequency response phase (unsprung mass ac-

celeration=input) (bottom), experimental 0.5 V

(r.m.s.) input (solid line), theoretical R � 13
1010 (dashed line), theoretical R � 0:5 3 1010

(dotted line)

Fig. 7 Parameter locus plot for the suspension model for

variations in the damper valve coefficient R from

0:1 3 1010 to 2 3 1010
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additional advantage is that it does not require an integra-

tion, with the stability problems caused by its associated

908 of phase lag.

For this active suspension system, the control loop shown

in Fig. 8 was used. This is based on a cascade structure

with an inner loop controlling body acceleration and an

outer loop controlling the ride height. Both loops have a

single proportional controller gain to be selected. There are

two prime motivations for this structure:

1. The inner loop will help to reduce the effects of non-

linear friction, which have been shown to affect both the

open-loop and passive responses.

2. The interaction between the loops should be minimal

because the inner loop (type 1) will have little effect at

low frequencies, while the outer loop (type 1) will have

its main effect at low frequency.

The controller was designed using the technique of sequen-

tial loop closure, starting with the inner loop. The parame-

ters were chosen from root locus plots for variations in the

appropriate controller gain. The value for the damper valve

restrictor was selected from the open-loop testing.

Antialiasing filters were included to filter the sensor

signals because the controller was implemented digitally;

these were second-order Butterworth filters with break

frequencies of 100 Hz. Though the controller was digital, it

had been designed in the Laplace domain because the

intended implementation frequency was over ten times the

bandwidth of the suspension system (12).

6.1 Inner loop body acceleration

A root locus plot for variations in the inner loop controller

gain Ka is shown in Fig. 9. Only the upper half of

the complex plane is discussed because the lower half

is a mirror image through the real axis. As the controller

gain increases, the two loci A and B start to move away

from the imaginary axis, before rotating clockwise and

then moving back towards it. Locus A would, for in-

finite gain, finish on the zero shown. This condition, if

possible, would indicate perfect body acceleration control

with the unsprung mass acting on the tyre alone. A third

locus C moves in towards the origin along the negative real

axis.

From this root locus plot a value of Ka � 4 was selected.

A normalized closed-loop frequency response of the inner

loop is shown in Fig. 10; this shows that it has a bandwidth

from 3 to 7 Hz.

6.2 Outer loop ride height

A root locus for variations in Kp is shown in Fig. 11. A

damping ratio of approximately 0.7 was obtained for locus

B for Kp � 1:0, while locus A has a damping ratio of less

than 0.4. An open-loop frequency response for the outer

Fig. 8 Closed-loop active suspension control system

Fig. 9 Root locus plot for the inner loop with variations

in the acceleration gain Ka from 0 to 20
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loop, for Kp � 1:0, is shown in Fig. 12, from which the

phase and gain margins are 608 and 12 dB.

7 CLOSED-LOOP SUSPENSION RESPONSES

The experimental suspension system was tested with the

controller gains selected above (Kp � 1:0 and Ka � 4:0)

and compared to those from the model. The active suspen-

sion controller was implemented digitally at 200 Hz.

An initial test was made to determine the response to a

demand in ride height. The closed-loop response for a

0.5 V (r.m.s.) input, which represents a suspension dis-

placement of 7.8 mm for a d.c. signal, is shown in Fig. 13a.

There is close correlation between the theoretical and

experimental results, with a bandwidth of approximately

3.5 Hz being indicated by both. This indicates good ride

height control up to that frequency. The resonant amplitude

for the theoretical results at 2.5 Hz is about 1 dB greater

than that measured experimentally. It is thought that this is

caused by the non-linear friction, which has not been

incorporated into the model.

The response of the body to a 2.5 mm amplitude ground

input is shown in Fig. 13b. The theoretical response has a

higher gain than the experimental, below 16 Hz, indicating

that the predicted response would be marginally worse than

that measured. The resonant peak for the practical results

has been reduced from 20 dB at 4 Hz for the passive

suspension, to about 5 dB at 3 Hz for the active suspension.

The unsprung mass response to a ground input, Fig. 13c,

shows good correlation up to 7 Hz. Above 7 Hz the

theoretical results indicate a greater attenuation up to

22 Hz than occurs experimentally. The experimental results

remain close to 0 dB up to 18 Hz; this would give less tyre

force fluctuation than that predicted. This effect cannot yet

be explained and is a characteristic of the experimental

apparatus which will require further investigation.

Fig. 11 Root locus plot for the outer loop with variations

in gain Kp from 0 to 10 in steps of 0.1

Fig. 12a Open-loop frequency response for the outer loop

gain

Fig. 12b Open-loop frequency response for the outer loop

phase

Fig. 10 Closed-loop frequency response of inner loop

with peak normalized to 0 dB; solid horizontal

line is at ÿ3 dB
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Experimental plots of body acceleration and ride height

against ground input amplitude are shown in Fig. 14. These

show that the active suspension system is not as sensitive to

non-linear friction as it was passively.

Plots comparing the experimental passive and active

suspension results for the body and unsprung mass acceler-

ation, and ride height to a 2.5 mm ground input, are shown

in Fig. 15. Figure 15a therefore demonstrates an im-

provement in ride by reducing the peak acceleration by

15 dB and lowering its frequency by over 1 Hz. Figure 15b

shows that in the active case there is little variation between

the ground input and motion of the unsprung mass. This

infers constant tyre displacement and hence reduced tyre

force variation. This figure shows a reduction in both of the

resonant peaks. Thus the aims of better control of the ride

Fig. 13a Closed-loop frequency response outer loop gain,

experimental 0.5 V (r.m.s.) input (solid line),

theoretical (dashed line), solid horizontal line is

at ÿ3 dB

Fig. 13b Closed-loop frequency response gain (body

acceleration=ground acceleration), experimental

2.5 mm input amplitude (solid line) and theore-

tical (dashed line)

Fig. 13c Closed-loop suspension frequency response gain

(unsprung mass acceleration=ground accelera-

tion), experimental 2.5 mm input amplitude

(solid line) and theoretical (dashed line)

Fig. 14a Closed-loop frequency response (body acceler-

ation=ground acceleration), three-dimensional

frequency and ground input versus gain

Fig. 14b Closed-loop frequency response (ride height=
ground acceleration), three-dimensional fre-

quency and ground input versus gain
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height, reduced tyre force variation and improved ride

quality have been achieved.

8 CONCLUSIONS

1. The design of an active suspension system for a racing

car has been shown to improve the ride height control,

to reduce tyre force variation and to improve the ride

quality.

2. It has been shown that an experimental active sus-

pension system can be adequately represented by a

fifth-order linear model.

3. The effect of non-linear friction was shown to be

greatest at low input levels. The suspension system

appeared to have a reduction in damping as the

frequency increased.

4. A simplified novel form of controller which was based

on a cascade structure was used for the active suspen-

sion system. This consisted of an inner loop body

acceleration controller and an outer loop ride height

controller. This type of controller was selected because

of its simplicity (only two gains for each wheel station)

and its ability to reject the effects of non-linear friction.

5. The active suspension system designed was shown to

give ride height control below 3.5 Hz, reduced tyre force

variation and better ride quality than the passive system.

6. The controller designed was shown experimentally to

give better results than those predicted theoretically.

7. It was demonstrated that a linear model can be used

successfully to design an active suspension system, once

an estimate to the level of low-frequency open-loop

damping is determined.
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APPENDIX

Theoretical quarter car suspension model in transfer

function form

The quarter car suspension model can be developed in

transfer function form by manipulating equations (1) to (5)

or directly from the state space form equation (6) using

(13)

H(s) � C(sIÿ A)ÿ1B� D (7)

Using either of the above methods the main transfer

functions for the quarter car suspension model are

(X s ÿ Xu)

Qi

(s) � ap kd(kt � (ms � mu)s2)

s(ás4 � âs3 � ãs2 � äs� å)
(8)

s2 X s

Qi

(s) � sap kd(kt � mus2)

(ás4 � âs3 � ãs2 � äs� å)
(9)

s2 Xu

Qi

(s) � ÿs3ap kd ms

(ás4 � âs3 � ãs2 � äs� å)
(10)

(X s ÿ X u)

s2 X z

(s) � ÿa2
d kt ms

(ás4 � âs3 � ãs2 � äs� å)
(11)

s2 X s

s2 X z

(s) � a2
p kt(kd � a2

d Rs)

(ás4 � âs3 � ãs2 � äs� å)
(12)

s2 Xu

s2 X z

(s) � kt(a
2
d mss2 � a2

da2
p Rs� a2

p kd)

(ás4 � âs3 � ãs2 � äs� å)
(13)

where

á � a2
d ms mu

â � a2
da2

p ms R� a2
da2

p mu R

ã � (a2
p kd � a2

d kt)ms � a2
p kd mu (14)

ä � a2
da2

p kt R

å � a2
p kd kt

The location of the transfer function zeros which are not at

the origin are shown in Table 2.

Table 2 Transfer function zeros not at the origin

Equation
number Zero(s) not at origin Value

(8) � j

r
kt

ms � mu

� �
� j33.9

(9) � j

r
kt

mu

� �
� j100.7

(12) ÿ kd

a2
d R

ÿ0.042

(13)
ÿa2

p R� (ap=ad)
p

(a2
pa2

d R2 ÿ 4ms kd)

2ms

ÿ10.54 � j33.9

D04195 # IMechE 1997 Proc Instn Mech Engrs Vol 211 Part D

INVESTIGATION INTO THE DESIGN OF AN ACTIVE SUSPENSION 173


	NOTATION
	1 INTRODUCTION
	2 DESCRIPTION OF THE ACTIVE SUSPENSION SYSTEM
	3 THEORETICAL QUARTER CAR SUSPENSION MODEL
	4 EXPERIMENTAL MEASUREMENTS
	5 THEORETICAL RESPONSE
	6 CONTROLLER DESIGN
	7 CLOSED-LOOP SUSPENSION RESPONSES
	8 CONCLUSIONS
	REFERENCES
	APPENDIX

