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Abstract: Automotive dampers are an important element of a vehicle's suspension system for controlling

road handling and passenger ride comfort. Many automotive dampers have non-linear asymmetric

characteristics to accommodate the incompatible requirements between ride comfort and road handling,

thus the ride comfort engineer requires techniques that can characterize this non-linear behaviour and

provide models of the dampers for use in ride performance simulations of the full suspension system.

The work presented in this paper is concerned with developing a frequency domain technique using

higher order frequency response functions (HFRFs) to characterize a Monroe automotive damper. The

principal diagonals and multidimensional surfaces of the HFRFs up to third order are obtained. Non-linear

damping coefficients for the damper are derived from the HFRFs and the energy transfer properties are

investigated.

The results show that the majority of the HFRFs contain no peaks or resonances, indicating that the

damper has no preferred frequencies for energy transfer. The accuracy of the damping coefficients

determined from the HFRFs is poor. This is due to the inability of the technique to measure the pure

HFRFs and separate the effects of non-linearities in the input actuator from those in the damper. It is

concluded that these constraints currently impose some limit on the use of the methodology.

Keywords: automotive dampers, non-linear damping, Volterra series, higher order frequency response

functions

NOTATION

Overdots denote differentiation with respect to time.

c damping [N=(m=s)]

f (t) force output (N)

f̂ (t) model predicted force output (N)

f (y, _y) restoring force (N)

F circular frequency (Hz)

ÄF frequency spacing (Hz)

H(ù) frequency response function (FRF)

k stiffness (N=m)

m mass (kg)

M number of cycles of input signal

n number of data points

ÄT time step (s)

x(t) input excitation force (N)

X (ù) input force spectrum (N)

y(t) displacement (m)

_y(t) velocity (m=s)

�y(t) acceleration (m=s2)

Y (ù) output displacement spectrum (m)

Ë(ù) composite FRF

1 INTRODUCTION

The characteristics of the damper are paramount if a

vehicle's suspension system is to improve passenger ride

comfort and increase vehicle control. The design of an

automotive damper requires two optimum damping values,

one setting for ride comfort and another `harder' setting for

vehicle control. This incompatibility has led to many

automotive dampers having non-linear asymmetric char-

acteristics. The ride comfort engineer requires techniques

that can characterize this non-linear behaviour and provide

simple models of the damper that can be used in ride

performance simulations of the suspension system.

Traditional techniques have adopted a phase plane

approach where the force output of the damper is plotted

against input displacement (work diagram) and input

velocity (characteristic diagram). Recently the restoring

force surface (RFS) method has been used to combine the

two diagrams to form a three-dimensional surface. This

technique is well adapted for the characterization of

automotive dampers and has been used successfully (1±4).

The RFS method can represent a wide range of non-

linearities but can only display a system's dependency on

two variables, namely displacement and velocity. Automo-

tive dampers are known to be frequency dependent.
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An alternative technique based on a functional power

series known as the Volterra series (5) also enables a wide

class of non-linear structures to be analysed. The output

from a non-linear system is represented by summing the

contribution of individual terms in the series. Loosely

speaking the coefficients of the terms are known as the

Volterra kernels, although these differ from coefficients of

normal power series in that they are a function of several

variables. By Fourier transforming these kernels the higher

order frequency response functions (HFRFs) are obtained.

The practical measurement of the Volterra kernels or

HFRFs for non-linear systems has become the subject of a

considerable amount of research. Bedrosian and Rice (6)

proposed a technique whereby the Volterra kernels were

obtained by multi-sine testing; the technique became

known as `harmonic probing' and is used in this work to

obtain the HFRFs up to third order for a Monroe auto-

motive damper from a Volkswagen Passat. The HFRFs are

used to derive coefficients for a non-parametric model and

investigate the energy transfer properties of the damper.

The layout of the paper is as follows. Section 2 gives

a brief theoretical background to the Volterra series, a

description of the harmonic probing technique and inter-

pretation of the HFRFs. Section 3 describes the apparatus

and Section 4 the experimental procedure. Section 5

discusses the results and Section 6 draws the conclusions

from the work.

2 THEORY

2.1 The Volterra series

Only a brief introduction to the Volterra series and

interpretation of the HFRFs is presented here. A more

detailed description can be found in the references (7, 8).

If an input X (ù) to a non-linear system produces an

output Y (ù), it can be shown [see reference (9)] that

Y (ù) � Y1(ù)� Y2(ù)� Y3(ù) � � � � � Yn(ù) � � � �
(1)

Where

Y1(ù) � H1(ù)X (ù) (2)

Y2(ù) � 1

2ð

�1
ÿ1

H2(ù1, ùÿ ù1)X (ù1)X (ùÿ ù1) dù1

(3)

Y3(ù) � 1

(2ð)2

�1
ÿ1

�1
ÿ1

H3(ù1, ù2, ùÿ ù1 ÿ ù2) � � �

X (ù1)X (ù2)X (ùÿ ù1 ÿ ù2) dù1 dù2 (4)

Yn(ù) � 1

(2ð)n

�1
ÿ1
� � �

�1
ÿ1

Hn(ù1, . . ., ùnÿ1, ùÿ ù1,

. . ., ùnÿ1)X(ù1) � � � X(ùnÿ1) � � �

X (ùÿ ù1, . . ., ùnÿ1) dù1 � � � dùnÿ1 (5)

The output from the non-linear system is represented by

summing the contribution of individual terms in the series.

The first term in the series is the contribution from the

linear part of the system, the second, third and nth terms

represent the quadratic, cubic and nth order contributions

to the total output. The terms H1, H2, . . ., H n in the

integrals are known as the Volterra kernel transforms or the

HFRFs.

2.2 Harmonic probing

Harmonic probing involves exciting a non-linear system

with a harmonic input and matching each component in

the response spectrum with the corresponding term in

the Volterra series. Consider the ideal input of a single

harmonic x(t) � X eiù1 t, the output from the system can be

represented directly from equation (1) as

y(t) � XH1(ù1) eiù1 t � X 2 H2(ù1, ù1) ei2ù1 t

� X 3 H3(ù1, ù1, ù1) ei3ù1 t � � � �

� X n H n(ù1, . . ., ù1) einù1 t � � � � (6)

The series contains an infinite number of terms at discrete

integer multiples of the fundamental frequency ù1. Each

term represents a harmonic that would be seen in the output

spectrum if a one-dimensional Fourier transform was

applied to the response data. By relating each individual

harmonic with its corresponding term in the Volterra series

the HFRFs can be determined. For example, if the second

harmonic Y (2ù1) in the output response was measured, the

second order FRF can be obtained from

H2(ù1, ù1) � Y (2ù1)

X 2
(7)

If ù1 was stepped over a range of frequencies and the FRF

computed at each frequency step, the `principal diagonal'

of the second-order FRF would be obtained.

To explain the meaning of `principal diagonal' it is

necessary to recognize that FRFs higher than first order are

multidimensional Fourier transforms of the Volterra ker-

nels, where the number of dimensions required to char-

acterize them completely is equal to the order of FRF. Thus

in the current example, to characterize fully the second-

order FRF H2(ù1, ù2), the input must be composed of two

harmonics both stepped over the frequency range to

produce the full multidimensional FRF surface. Similarly,

to express fully the nth order FRF, would require the input

of n harmonics all stepped over the frequency range.

Therefore, by using a single harmonic, one is effectively

reducing the multi-dimensionality of the HFRF to a single
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dimension and probing along a line in the surface where

the frequency of all the input harmonics are equal, i.e.

ù1 � ù2 � ù3 � ùn.

2.3 Harmonic probing with a sinusoidal input

By probing with a single harmonic input it is possible to

acquire the exact Volterra kernels and hence the pure

HFRFs for a non-linear system. Unfortunately, it is not

possible to generate a pure harmonic as an excitation

signal. The nearest physical signal available is a sine wave,

i.e. x(t) � X cos (ù1 t). A sine wave contains two harmo-

nics

x(t) � X

2
(eiù1 t � eÿiù1 t) (8)

The inclusion of the extra harmonic produces additional

terms in the Volterra series representation of the output

response. These terms can interact and create additional

components to the harmonics in the output spectrum.

The response of a non-linear system to a single sine

wave can be written from equation (1) as

y(t) � H1(ù1)
X

2

� �
eiù1 t � H1(ÿù1)

X

2

� �
eÿiù1 t

� H2(ù1, ù1)
X

2

� �2

ei2ù1 t

� H2(ÿù1, ÿù1)
X

2

� �2

eÿi2ù1 t

� H2(ù1, ÿù1)
X

2

� �2

�H2(ÿù1, ù1)
X

2

� �2

� H3(ù1, ù1, ù1)
X

2

� �3

ei3ù1 t

� H3(ÿù1, ÿù1, ÿù1)
X

2

� �3

eÿi3ù1 t

� H3(ù1, ù1, ÿù1)
X

2

� �3

eiù1 t

� H3(ÿù1, ÿù1, ù1)
X

2

� �3

eÿiù1 t

� H3(ù1, ÿù1, ù1)
X

2

� �3

eiù1 t

� H3(ÿù1, ù1, ÿù1)
X

2

� �3

eÿiù1 t

� H3(ÿù1, ù1, ù1)
X

2

� �3

eiù1 t

� H3(ù1, ÿù1, ÿù1)
X

2

� �3

eÿiù1 t

� higher order terms (9)

It can be shown from reference (10) that the kernel

transforms can be assumed symmetrical, i.e. H2(ù1, ù2)

� H2(ù2, ù1) and the expression can therefore be simpli-

fied to

y(t) � H1(ù1)
X

2

� �
eiù1 t � H1(ÿù1)

X

2

� �
eÿiù1 t

� H2(ù1, ù1)
X

2

� �2

ei2ù1 t

� H2(ÿù1, ÿù1)
X

2

� �2

eÿi2ù1 t

� 2H2(ù1, ÿù1)
X

2

� �2

� H3(ù1, ù1, ù1)
X

2

� �3

ei3ù1 t

� H3(ÿù1, ÿù1, ÿù1)
X

2

� �3

eÿi3ù1 t

� 3H3(ù1, ù1, ÿù1)
X

2

� �3

eiù1 t

� 3H3(ÿù1, ÿù1, ù1)
X

2

� �3

eÿiù1 t

� . . . higher order terms (10)

Using the property of conjugate symmetry for a complex

quantity z, i.e.

z eiù t � z� eÿiù t � 2jzj cos (ùt � �z)

the series finally becomes

y(t) � X jH1(ù1)j cos [ù1 t � �H1(ù1)]

� 1

2
X 2jH2(ù1, ù1)j cos [2ù1t � �H2(ù1, ù1)]

� 1

2
X 2jH2(ù1, ÿù1)j
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� 1

4
X 3jH3(ù1, ù1, ù1)j cos

3 [3ù1 t � �H3(ù1, ù1, ù1)]

� 3

4
X 3jH3(ù1, ù1, ÿù1)j cos

3 [ù1 t � �H3(ù1, ù1, ÿù1)]

� higher order terms (11)

The first harmonic at ù1 contains an additional component

due to the third-order FRF H3(ù1, ù1, ÿù1) term. If the

series was extended to infinity, the first harmonic would

also contain components from H5(ù1, ù1, ù1, ÿù1, ÿù1),

H7(ù1, ù1, ù1, ù1, ÿù1, ÿù1, ÿù1) and all odd ordered

terms where the combination of positive and negative

values for ù total ù1. Similarly, the second harmonic

will contain components from the fourth-order FRF

H4(ù1, ù1, ù1, ÿù1), and all even ordered terms higher

than second order where the addition of the positive and

negative values for ù total 2ù1. This process of higher order

terms producing additional components to lower order

harmonics will affect all harmonics in the output spectrum.

The contribution of each additional term to the harmonic

will depend not only on the amplitude of the term but also on

the phase difference between itself and the first term in the

series.

When measuring harmonics in the response spectrum it

is impossible to separate the individual components that

make up a harmonic. Therefore, the true Volterra kernels

and hence the pure HFRFs can no longer be determined.

To account for the extra terms the measurable HFRFs

will be referred to as composite HFRFs and denoted

Ë1, Ë2, . . ., Ën to represent the first, second . . . nth-order

FRF. Composite HFRFs are therefore dependent on the

type and level of excitation.

These additional terms are usually called `degenerate'

terms because they tend to corrupt or distort the composite

HFRFs especially around the fundamental resonance and at

high excitation levels. To illustrate the type of distortion,

Fig. 1 shows the principal diagonal of the first three pure

HFRFs in terms of receptance for the system

m�y(t)� c _y(t)� k1 y(t)� k2 y(t)2 � k3 y(t)3 � x(t)

(12)

with the parameters

m � 1:0 kg

c � 5:0 N=(m=s)

k1 � 104 N=m

k2 � 107 N=m2

k3 � 5 3 109 N=m3

The system's response up to third order to a single

harmonic of unit amplitude can be written directly from

equation (6) as

y(t) � H1(ù) eiù t � H2(ù, ù) ei2ù t � H3(ù, ù, ù) ei3ù t

(13)

Differentiating equation (13) for the velocity and accelera-

tion gives

_y(t) � iùH1(ù) eiù t � i2ùH2(ù, ù) ei2ù t

� i3ùH3(ù, ù, ù) ei3ù t (14)

�y(t) � ÿù2 H1(ù) eiù t ÿ (2ù)2 H2(ù, ù) ei2ù t

ÿ (3ù)2 H3(ù, ù, ù) ei3ù t (15)

Substituting y, _y and �y in to equation (12) and equating

coefficients of eiù t, e i2ù t and ei3ù t gives expressions for the

first-, second- and third-order FRF respectively,

H1(ù) � 1

(k1 ÿ mù2)� icù
(16)

H2(ù, ù) � ÿk2 H1(ù)H1(ù)

[k1 ÿ m(2ù)2]� ic2ù

� ÿH1(2ù)k2 H1(ù)2 (17)

H3(ù, ù, ù)

� ÿ2k2 H1(ù)H2(ù, ù)ÿ k3 H1(ù)H1(ù)H1(ù)

[k1 ÿ m(3ù)2]� ic3ù

� ÿH1(3ù)[2k2 H1(ù)H2(ù, ù)� k3 H1(ù)3]

� 2k2
2 H1(3ù)H1(2ù)H1(ù)3 ÿ k3 H1(3ù)H1(ù)3

(18)

The first-order FRF is unaffected by the non-linear

parameters and is simply determined by the linear part of

the system. The magnitude of the FRF contains a single

peak at a resonant frequency ùr � 15:9 Hz and a corre-

sponding phase change of 1808 centred around the reso-

nance. At low frequency the magnitude asymptotes to

1

k1

� 10ÿ4 m=N

Equations (17) and (18) show how HFRFs can be expressed

in terms of lower order FRFs and ultimately H1(ù). As a

consequence the resonances of the HFRFs are determined

by the first-order resonance. The second-order FRF con-

tains a primary resonance at ùr because of the term H1(ù)2

and a secondary resonance at ùr=2 � 7:95 Hz because of

the H1(2ù) term. The phase change associated with the
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secondary resonance is 1808, where the primary resonance

now has a phase change of 3608 because the term H1(ù) is

raised to the power 2. At low frequency the magnitude of

the second-order FRF asymptotes to

k2

k3
1

� 10ÿ5 m=N2

The third-order FRF contains the primary and secondary

resonances and a third resonance at ùr=3 � 5:3 Hz because

of the H1(3ù) term. The phase change associated with the

primary resonance is now 5408 because the H1(ù) term is

raised to the power 3. At low frequency the magnitude

asymptotes to

2k2
2

k5
1

ÿ k3

k4
1

� 1:5 3 10ÿ6 m=N3

These results show how the characteristics of a non-linear

system can be identified from the pure HFRFs.

A numerical simulation routine was written to perform a

stepped sine test emulating the procedure that would be

adopted in testing a real structure to obtain the composite

HFRFs for the system given by equation (12). The response

of the system was integrated using a fourth-order Runge±

Kutta routine. At each frequency step the sampling fre-

quency was set to 16 times the frequency of interest to

ensure aliasing was avoided. For each simulation a number

of `run up' points, equivalent to 60 s of data, was generated

to ensure all transients had decayed before one complete

cycle of input force and output displacement data was

recorded. A conventional fast Fourier transform (FFT)

routine was applied to the data and the first three composite

HFRFs computed from the spectra information. The input

frequency was then incremented and the procedure re-

peated. The composite HFRFs were computed over a

frequency range of 4±20 Hz with a 0.05 Hz increment step.

The simulation was repeated for input amplitude levels of

0.1, 0.3, 0.5, 0.7, and 0.9 N peak.

Figure 2 shows the principal diagonals of the first three

composite HFRFs in terms of receptance for the system

given by equation (12). As the amplitude of the input is

increased, the distortion effectively skews the fundamental

resonance on all the HFRFs to a lower frequency, an effect

known as `softening' due to the large quadratic term in the

system. At high input amplitudes above 0.6 N, the first-

order composite FRF also begins to distort at 7.95 Hz; this

is due to the degenerate third-order term H3(ù, ù, ÿù)

containing a second-order H2 function at 2ù, i.e.

H3(ù, ù, ÿù) � H1(ù) ÿ 2

3
k2[2H1(ù)H2(ù, ÿù)

�

� H1(ÿù)H2(ù, ù)]

�
. . .

ÿ k3 H1(ù)H1(ù)H1(ÿù) (19)

where

H2(ù, ù) � ÿk2 H1(2ù)H1(ù)H1(ù) (20)

The existence of the HFRFs depends on the type of non-

linearity within a system; the system defined by equation

(12) contained both a quadratic and cubic stiffness which

produced components in the second- and third-order FRFs,

indeed all HFRFs would exist for this system. However, if

the system contained only a non-linear cubic term, i.e.

k2 � 0, all components in the second-order FRF would be

null and the third-order FRF would be modified, containing

only two resonances at ùr and ùr=3. The first-order FRF

would be unchanged. Therefore for all even-ordered FRFs

to exist, a non-linear system must contain an even-ordered

non-linear parameter. However, a non-linear system con-

taining only first- and second-order terms will still produce

all odd-ordered FRFs because of the first-order term.

The form of distortion on the composite HFRFs is also

dependent on the type of non-linearity within a system. If a

system contained only a positive non-linear cubic term the

distortion would skew the fundamental resonance to a

higher frequency, an effect known as `hardening'.

Comparison of Figs 1 and 2 shows that the effect of the

degenerate terms becomes more significant as the input

amplitude is increased. At low amplitudes the composite

HFRFs appear to contain no distortion, in effect they

converge to the true Volterra kernel transforms obtained

previously from probing with a single harmonic.

2.4 Multidimensional HFRFs

To derive expressions for the second-order multidimen-

sional FRF for the system given by equation (12) the input

must contain two harmonics

x(t) � X1 eiù1 t � X2 eiù2 t (21)

From equation (6) the response can be written

y(t) � H1(ù1)X 1 eiù1 t � H1(ù2)X 2 eiù2 t

� H2(ù1, ù1)X 2
1 ei2ù1 t � H2(ù2, ù2)X 2

2 ei2ù2 t

� 2H2(ù1, ù2)X 1 X 2 ei(ù1�ù2) t

� higher order terms (22)

Substituting expressions for y, _y and �y into equation (12)

and equating coefficients of X 1 X 2 ei(ù1�ù2) t gives

H2(ù1, ù2) � ÿk2 H1(ù1)H1(ù2)

k1 ÿ m(ù1 � ù2)2 � ic(ù1 � ù2)
(23)

which can be reduced to

H2(ù1, ù2) � ÿk2 H1(ù1)H1(ù2)H1(ù1 � ù2) (24)
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Figure 3 shows the principal quadrant (ù1 . 0, ù2 . 0) of

the second-order FRF H2(ù1, ù2) in terms of gain and

phase and corresponding contour plots for the system over

the frequency range 0±25 Hz with a 1 N peak input.

Clearly the FRF is symmetrical about the line where

ù1 � ù2, the principal diagonal. If ùr denotes the funda-

mental resonance of the system at 15.9 Hz, three peaks

can be observed in the magnitude plot at points

where ù1 � ùr and ù2 � 0, ù1 � 0 and ù2 � ùr, and

ù1 � ù2 � ùr. The three peaks are connected by ridges;

these ridges are important in determining the energy

transfer properties of the system. The ridge that runs along

the line where ù1 � ù2 � ùr characterizes the energy

transfer that occurs when any two harmonics are at

frequencies which sum to the fundamental resonant fre-

quency, thus exciting the resonance. This can be important

in some situations, for example when the input is a

broadband random signal, if the second-order FRF exists

then any two pairs of harmonics can combine to excite the

fundamental resonance even if the input is band-limited to

a frequency range which does not include the resonance. In

theory the second-order FRF is defined for all frequencies

and is therefore not restricted to the principal quadrant and

can describe any interaction which can take place between

any two positive or negative frequencies.

To define the multidimensional third-order FRF

H3(ù1, ù2, ù3) for the system, the input must contain

three individual harmonics, i.e.

x(t) � X1 eiù1 t � X2 eiù2 t � X3 eiù3 t (25)

From equation (6) the response can be written as

y(t) � H1(ù1)X 1 eiù1 t � H1(ù2)X 2 eiù2 t

� H1(ù3)X 3 eiù3 t

� H2(ù1, ù1)X 2
1 ei2ù1 t � H2(ù2, ù2)X 2

2 ei2ù2 t

� H2(ù3, ù3)X 2
3 ei2ù3 t

� 2H2(ù1, ù2)X1 X2 ei(ù1�ù2) t

Fig. 1 The principal diagonals of the first-, second- and third-order receptance FRFs for the system

�y(t)� 5 _y(t)� 104 y(t)� 107 y(t)2 � 5:0 3 109 y(t)3 � x(t)

Proc Instn Mech Engrs Vol 211 Part D D00596 # IMechE 1997

186 S CAFFERTY AND G R TOMLINSON



� 2H2(ù2, ù3)X 2 X 3 ei(ù2�ù3) t

� 2H2(ù1, ù3)X 1 X 3 ei(ù1�ù3) t

� H3(ù1, ù1, ù1)X 3
1 ei3ù1 t

� H3(ù2, ù2, ù2)X 3
2 ei3ù2 t

� H3(ù3, ù3, ù3)X 3
3 ei3ù3 t

� 3H3(ù1, ù1, ù2)X 2
1 X 2 ei(2ù1�ù2) t

� 3H3(ù1, ù2, ù2)X 1 X 2
2 ei(ù1�2ù2) t

� 3H3(ù2, ù2, ù3)X 2
2 X 3 ei(2ù2�ù3) t

� 3H3(ù2, ù3, ù3)X 2 X 2
3 ei(ù2�2ù3) t

� 3H3(ù1, ù1, ù3)X 2
1 X 3 ei(2ù1�ù3) t

� 3H3(ù1, ù3, ù3)X 1 X 2
3 ei(ù1�2ù3) t

� 6H3(ù1, ù2, ù3)X 1 X 2 X 3 ei(ù1�ù2�ù3) t

� higher order terms (26)

and must contain all terms up to third order. Substituting

expressions for y, _y and �y into equation (2) and equating

coefficients of X 1 X 2 X 3 ei(ù1�ù2�ù3) t gives an expression

for the third-order FRF,

H3(ù1, ù2, ù3) �
H1(ù1, ù2, ù3) ÿ 2k2

3
[H1(ù1)H2(ù2, ù3)

�

� H1(ù2)H2(ù1, ù3) � � � � H1(ù3)H2(ù1, ù2)]

ÿ k3 H1(ù1)H1(ù2)H1(ù3)

�
(27)

Fig. 2 The principal diagonals of the first-, second- and third-order receptance FRFs for the system

�y(t)� 5 _y(t)� 104 y(t)� 107 y(t)2 � 5 3 109 y(t)3 � x(t) showing how degenerate terms effect

the FRF
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which can be written in terms of H1,

H3(ù1, ù2, ù3) �

H1(ù1, ù2, ù3)
2k2

2

3
[H1(ù1)H1(ù2)H1(ù3)H1(ù2 � ù3)

�
� H1(ù2)H1(ù1)H1(ù3)H1(ù1 � ù3)

� H1(ù3)H1(ù1)H1(ù2)H1(ù1 � ù2)]

ÿ k3 H1(ù1)H1(ù2)H1(ù3)

�
(28)

The multidimensional third-order FRF H3(ù1, ù2, ù3)

describes the interactions that can take place between any

three harmonics. To represent the FRF fully requires three

independent frequency axes and four dimensions if the

magnitude or phase is to be illustrated. Clearly such a plot

is difficult to visualize. To overcome this, the FRF is

normally only probed in the plane (ù1, ù2, ù1), effectively

taking a slice through the complete FRF along the plane

where ù3 � ù1. This slice is easily represented in three-

dimensional space allowing the gain and phase information

to be interpreted.

Figure 4 shows the principal quadrant of H3(ù1, ù2, ù1)

for the system given by equation (12) over the range of

0±25 Hz with an input level � 1 N peak. The HFRF is no

longer symmetrical in the frequency axis and with the

relatively large number of local peaks in the magnitude

plot, it is difficult to interpret. If ùr defines the funda-

mental resonance at 15.9 Hz there are ridges where

ù1 � ùr from the term H1(ù1)

ù2 � ùr from the term H1(ù2)

2ù1 � ùr from the term H1(ù1 � ù3)

ù1 � ù2 � ùr from the term H1(ù1 � ù2) and

H1(ù2 � ù3)

2ù1 � ù2 � ùr from the term H1(ù1 � ù2 � ù3)

Fig. 3 The principal quadrant of the FRF H2(ù1, ù2) for the system �y(t)� 5 _y(t)� 104 y(t) �
107 y(t)2 � 5 3 109 y(t)3 � x(t)
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Unfortunately the multidimensional HFRFs suffer from the

same problems as the principal diagonals when the physical

input of a sine wave is used. The use of a sine wave input

not only produces degenerate terms that skew the resonant

peaks of the HFRF, but the additional terms can also

produce ridges on the surfaces when the two input

frequencies are multiples of each other. For example, Fig. 5

shows the output spectrum from a non-linear system

(whose second- and third-order FRFs exist) for an input of

two sine waves at 20 and 17 Hz, 20 and 10 Hz, and both at

20 Hz. Tables 1, 2 and 3 show the corresponding frequency

components produced in the Volterra series response,

assuming terms higher than third order are negligible for

the three sets of frequencies.

Clearly when the two frequencies are not multiples of

each other, the second-order harmonic at 37 Hz has no

additional components contributing to it. However, when

the two frequencies are 20 and 10 Hz the second-order

harmonic at 30 Hz now has two extra components from the

third-order terms. Similarly when the two input frequencies

are equal at 20 Hz, the second-order harmonic at 40 Hz

contains two extra components from the second-order

terms.

These extra components that occur when the two input

frequencies are multiples of each other produce additional

ridges on the surface of the multidimensional HFRFs. Figure

6 shows the principal quadrant of the composite second-

order FRF in terms of gain and phase and corresponding

contour plots for the system given by equation (12). Clearly

a ridge can now be seen along the principal diagonal in the

magnitude plot due to the additional components of the

second-order harmonic when the two frequencies are equal.

The additional components to the second-order harmonic

from the third-order terms are clearly negligible, or there

would be ridges along the lines where ù1 � ù2=2 and

ù2 � ù1=2. To overcome this problem Boyd (11) suggested

the rather limiting technique of using frequencies that are

prime numbers. However, in this research, a linear inter-

polation between the frequency points where the ridges

occur is used, effectively smoothing the FRF.

Fig. 4 The principal quadrant of the FRF H3(ù1, ù2, ù1) for the system �y(t)� 5 _y(t)� 104 y(t) �
107 y(t)2 � 5 3 109 y(t)3 � x(t)
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3 APPARATUS

Experimental testing was carried out using an HP UNIX

work-station connected to a 12 channel DIFA Scadas II

data acquisition system. Data were acquired by the pro-

grammable dual filter amplifier modulus (PDFAs) and an

excitation signal was generated and fired by the quadruple

analogue to digital converter module (QDAC) at the front

of the Scadas II. The software used to drive the system

was a commercially available dynamic testing package,

supplied by Leuven Measurement and Systems (LMS).

Specific dedicated code was written by the author in the

LMS user programmable acquisition (UPA) language to

probe the damper harmonically and perform all subsequent

acquisition and analysis of data.

The experimental apparatus was set up as shown in Fig.

7. The test facility consisted of a Zonic 1107 hydraulic

actuator and dual-loop master controller. The base of the

actuator was secured to the concrete floor. The main body

of the damper was connected to the actuator head and the

piston of the damper was connected via a piezoelectric

force transducer to the surrounding metal structure. The

dual-loop master controller was set to control the static and

dynamic displacement of the actuator head. The input

displacement was measured from a displacement trans-

ducer incorporated within the actuator.

3.1 Non-linearities of the actuator

Hydraulic actuators are known to be non-linear. The output

from the damper therefore cannot be directly related to the

defined input at the QDAC but to some distorted input

from the actuator. Figure 8 shows the spectrum of a

sinusoidal input signal at 10 Hz from the QDAC, from the

actuator, and the output force response from the damper.

The non-linearities of the actuator have introduced into the

input higher order harmonics which distort the sinusoidal

signal. The non-linearities of the damper will also produce

harmonics in the output spectrum but, unfortunately, it is

Fig. 5 Output spectrum from a non-linear system to an input of two sine waves at 20 and 17 Hz (top),

20 and 10 Hz (middle) and at 20 Hz (bottom)

Proc Instn Mech Engrs Vol 211 Part D D00596 # IMechE 1997

190 S CAFFERTY AND G R TOMLINSON



impossible to determine which parts of the output harmo-

nics are due to the damper and which parts are due to the

additional input from the actuator. The actuator therefore

represents an additional non-linear system in series with

the damper. To minimize the effect of the actuator, the

damper was tested at a low input amplitude. However, the

composite HFRFs will represent the damper and actuator

as a single system and are dependent on the input amp-

litude.

3.2 Harmonic probing software

Harmonic probing is a relatively slow method. For each

frequency point in the FRF a sinusoidal input must be

generated and the HFRF calculated from the input and

output response spectra. Computer software was developed

to automate this process using the UPA language to control

the DIFA Scadas II.

For harmonic probing to be successful, the exact

frequency of the input excitation must be controlled. The

QDAC signal generator could only achieve discrete fre-

quencies depending on the required time step of the signal.

The QDAC clock speed had a range between 4.0 and

999.9 ìs in steps of 0.1 ìs. The frequency generated by the

QDAC therefore may not be the actual frequency required

depending on the precision of the time step.

At the beginning of the program the desired frequency

range, frequency step size and input amplitude are defined

Table 1 Frequency components produced in the output

response from a non-linear system when the

input consists of two sine waves at 20 and 17 Hz

Term

Frequency

component

(Hz) Description

X1 H1(ù1) 20

X2 H1(ù2) 17

(X 2
1=2)H2(ù1, ù1) 40

(X 2
1=2)H2(ù1, ÿù1) 0

(X1 X2=2)H2(ù1, ù2) 37 True component of H2 FRF

(X1 X2=2)H2(ù1, ÿù2) 3

(X 2
2=2)H2(ù2, ù2) 34

(X 2
2=2)H2(ù2, ÿù2) 0

(X 3
1=4)H3(ù1, ù1, ù1) 60

(3X 3
1=4)H3(ù1, ù1, ÿù1) 20

(X 2
1 X2=4)H3(ù1, ù1, ù2) 57

(X 2
1 X2=4)H3(ù1, ù1, ÿù2) 23

(X 2
1 X2=2)H3(ù1, ÿù1, ù2) 17

(X 1 X 2
2=2)H3(ù1, ù2, ù2) 54

(X 1 X 2
2=4)H3(ÿù1, ù2, ù2) 14

(X 1 X 2
2=2)H3(ù1, ù2, ÿù2) 20

(X 3
2=4)H3(ù2, ù2, ù2) 51

(3X 3
2=4)H3(ù2, ù2, ÿù2) 17

�
higher order terms

..

.

Table 2 Frequency components produced in the output

response from a non-linear system when the

input consists of two sine waves at 20 and 10 Hz

Term

Frequency

component

(Hz) Description

X1 H1(ù1) 20

X2 H1(ù2) 10

(X 2
1=2)H2(ù1, ù1) 40

(X 2
1=2)H2(ù1, ÿù1) 0

(X1 X2=2)H2(ù1, ù2) 30 True component of H2 FRF

(X1 X2=2)H2(ù1, ÿù2) 10

(X 2
2=2)H2(ù2, ù2) 20

(X 2
2=2)H2(ù2, ÿù2) 0

(X 3
1=4)H3(ù1, ù1, ù1) 60

(3X 3
1=4)H3(ù1, ù1, ÿù1) 20

(X 2
1 X2=4)H3(ù1, ù1, ù2) 50

(X 2
1 X2=4)H3(ù1, ù1, ÿù2) 30 Additional component of H2

FRF

(X 2
1 X2=2)H3(ù1, ÿù1, ù2) 10

(X 1 X 2
2=2)H3(ù1, ù2, ù2) 40

(X 1 X 2
2=4)H3(ÿù1, ù2, ù2) 0

(X1 X 2
2=2)H3(ù1, ù2, ÿù2) 20

(X 3
2=4)H3(ù2, ù2, ù2) 30 Additional component of H2

FRF

(3X 3
2=4)H3(ù2, ù2, ÿù2) 10

�
higher order terms

..

.

Table 3 Frequency components produced in the output

spectrum from a non-linear system when the

input consists of a sine wave at 20 Hz

Term

Frequency

component

(Hz) Description

X1 H1(ù1) 20

X2 H1(ù2) 20

(X 2
1=2)H2(ù1, ù1) 40 Additional component of H2

FRF

(X 2
1=2)H2(ù1, ÿù1) 0

(X 1 X2=2)H2(ù1, ù2) 40 True component of H2 FRF

(X1 X2=2)H2(ù1, ÿù2) 0

(X 2
2=2)H2(ù2, ù2) 40 Additional component of H2

FRF

(X 2
2=2)H2(ù2, ÿù2) 0

(X 3
1=4)H3(ù1, ù1, ù1) 60

(3X 3
1=4)H3(ù1, ù1, ÿù1) 20

(X 2
1 X2=4)H3(ù1, ù1, ù2) 60

(X 2
1 X2=4)H3(ù1, ù1, ÿù2) 20

(X 2
1 X2=2)H3(ù1, ÿù1, ù2) 20

(X1 X 2
2=2)H3(ù1, ù2, ù2) 60

(X 1 X 2
2=4)H3(ÿù1, ù2, ù2) 20

(X1 X 2
2=2)H3(ù1, ù2, ÿù2) 20

(X 3
2=4)H3(ù2, ù2, ù2) 60

(3X 3
2=4)H3(ù2, ù2, ÿù2) 20

�
higher order terms

..

.
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Fig. 6 The principal quadrant of the multidimensional second-order FRF Ë2(ù1, ù2) for the system

�y(t)� 5 _y(t)� 104 y(t)� 107 y(t)2 � 5 3 109 y(t)3 � x(t), showing how degenerate terms affect

the surface

Fig. 7 Schematic diagram of the experimental apparatus
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by the user. The software calculates the optimum frequency

achievable by the QDAC for each frequency step in the

FRF. The input signal is fired by the QDAC and a small

time delay introduced to let all transients decay before

8192 points of input and output response time data are

recorded by the PDFA acquisition modules. The sampling

frequency of the PDFA modules is set equal to the sampling

frequency of the input. The two recorded time responses

are then Fourier transformed to obtain their spectra. By

locking the PDFA and QDAC sampling frequencies, the

spectra of the two responses are ensured to always contain

spectral lines at the input frequency and all higher har-

monics. This ensures the magnitude of the harmonics are

measured accurately, a condition essential to the harmonic

probing technique. The HFRFs are calculated from the

spectra information and stored before the frequency is

stepped and the process repeated. A complete description

of the software can be found in reference (7).

The software was validated on an electronic circuit. The

circuit represented a `well-behaved' non-linear SDOF sys-

tem and its behaviour was well documented in reference

(8). The circuit also avoided many of the practical problems

of structural testing. The signals into and out of the circuit

were voltages, there was no need for an electrodynamic

shaker, and the response signals did not require condition-

ing by charge amplifiers.

Figure 9 shows the principal diagonals of the first three

composite HFRFs in terms of receptance for the circuit

between 10.0 and 200.0 Hz, with a frequency step of

1.0 Hz and an input amplitude of 1.0 V peak. The first-

order composite FRF contains a resonant frequency at

150.0 Hz and at low frequency the magnitude asymptotes

to 0.2, giving a linear stiffness coefficient of k1 � 5:0.

The second-order composite FRF contains the fundamen-

tal resonance at 150.0 Hz and a secondary resonance

at 75.0 Hz, half the fundamental. At low frequency the

magnitude of the second-order FRF asymptotes to

3:0 3 10ÿ3, giving a quadratic stiffness of k2 � 3:75

310ÿ1. The third-order composite FRF contains a reso-

nance at 50.0 Hz, a third of the fundamental. However,

Fig. 8 Spectrum of a sinusoidal input signal: from the QDAC (upper), the signal at the actuator

(middle) and the force response from the automotive damper (lower)

D00596 # IMechE 1997 Proc Instn Mech Engrs Vol 211 Part D

CHARACTERIZATION OF AUTOMOTIVE DAMPERS 193



the quality of this FRF is poor between the ranges of

10.0±30.0 Hz and 100.0±200.0 Hz. It was assumed that

the circuit contained only a small cubic stiffness, and, at

low input amplitudes, the third harmonic is indistinguish-

able from the noise floor. To ensure this assumption was

correct and not an error in the program, a further test

was completed with the input amplitude increased to 3.0 V

peak. Figure 10 shows the resulting composite HFRFs.

The first- and second-order composite FRFs remain un-

changed, apart from the fundamental resonance being

skewed to a lower frequency, an effect consistent with a

system whose non-linearity is dominated by a quadratic

term and excited at high input amplitudes. The quality of

the third-order composite FRF has improved and three

resonances can be seen in the magnitude, although above

170.0 Hz the FRF is still poor. At low frequency the

magnitude asymptotes to 1:0 3 10ÿ4, giving a cubic stiff-

ness of k3 � ÿ6:25 3 10ÿ3.

Table 4 compares the circuit's parameters obtained from

the harmonic probing software to the results obtained by

Storer, using direct parameter estimation by singular value

decomposition in reference (8). The circuit parameters

obtained from the software compared well with those

obtained in reference (8), and the second- and third-order

composite FRFs contained secondary and tertiary reso-

nances at 75.0 Hz and 50.0 Hz. The software was therefore

considered successful.

Figures 11 and 12 show the principal quadrant of the

second- and third-order composite multidimensional FRFs

for the circuit over the frequency range 10.0±200.0 Hz, in

terms of magnitude and phase with corresponding contour

plots. The amplitude of the input signal remained at 3.0 V

peak but the frequency step was increased to 2.0 Hz. A

ridge appears on the second-order composite FRF along the

line where ù1 � ù2 � 150:0 Hz and two ridges appear on

the third-order composite FRF along the lines where

2ù1 � ù2 � 150:0 Hz and ù1 � ù2 � 150:0 Hz. These re-

sults are consistent with HFRF theory, and therefore the

software developed to probe multidimensional HFRFs was

considered successful.

Fig. 9 Principal diagonals of the first-, second- and third-order composite FRFs in terms of receptance

for the circuit at an input of 1 V peak
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4 EXPERIMENTAL PROCEDURE

The damping force of an automotive damper is predomi-

nantly dependent on velocity. Defining FRFs for an

automotive damper in terms of output force=input velocity

reduces the form of the FRF to a simple expression

dependent only on the damping coefficient of the damper.

Unfortunately, it was difficult to measure the input velocity

from the actuator accurately; accelerometers produced a

signal that was corrupted with pump noise from the

hydraulic power unit. However, a high-quality input dis-

placement signal could be recorded directly from the

displacement transducer incorporated within the actuator.

All FRFs for the automotive damper were therefore defined

in terms of force output=input displacement (dynamic

stiffness).

The actuator's hydraulic oil was allowed to warm to its

operating temperature before the beginning of any tests.

The principal diagonals of the first three composite HFRFs

were obtained over the frequency range 2.0±50.0 Hz, with

a 0.5 Hz resolution. A thermocouple was attached to the

outer casing of the damper to allow the temperature of the

damping oil to be monitored and recorded. A time delay of

2 min was introduced between each frequency step to allow

the oil to cool and ensure the temperature remained

relatively constant over the test. The HFRFs were obtained

at an input voltage of 0.5 V. The input voltage level of

0.5 V produced a force±velocity diagram that displayed the

Fig. 10 Principal diagonals of the first-, second- and third-order composite FRFs in terms of

receptance for the circuit at an input of 3 V peak

Table 4 Comparison of the parameters obtained for the

electronic circuit by harmonic probing software

and Storer

Parameter Harmonic probing Storer

m 5.54 3 10ÿ6 5.63 3 10ÿ6

c 1.1 3 10ÿ3 4.7 3 10ÿ4

k1 5.0 5.0
k2 3.75 3 10ÿ1 7.25 3 10ÿ2

k3 ÿ6.25 3 10ÿ3 ÿ9.60 3 10ÿ3
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cleanest characteristics of the damper without introducing

large amounts of hysteresis from the damper or additional

non-linear effects from the actuator.

The multidimensional second- and third-order composite

HFRFs were acquired for the damper over the frequency

range 2.0±50.0 Hz with an input amplitude of 0.5 V. The

frequency step was increased to 1.0 Hz to reduce the

amount of time taken to complete the HFRFs.

5 RESULTS

Figure 13 shows the principal diagonal of the first three

composite HFRFs for the damper, in terms of magnitude

and phase. The HFRFs show the damper has no resonant

conditions within the frequency range tested and therefore

no preferred frequencies for energy transfer as in a resonant

structure.

The force output from the damper is considered to be

represented by

f (t) � c1 _y(t)� c2 _y(t)2 � c3 _y(t)3 � � � � � cn _y(t)n

(29)

where c1, c2, c3, . . ., cn are the linear and non-linear

damping coefficients. For a harmonic input the velocity

can be replaced in terms of displacement and equation (29)

becomes

f (t) � ic1ù1Y eiù1 t ÿ c2ù
2
1Y 2 ei2ù1 t ÿ ic3ù

3
1Y 3 ei3ù1 t

� � � � � cninùn
1 Y n einù1 t (30)

Assuming a pure harmonic input, a Volterra series repre-

sentation of the force output can be derived from equation

(6) as

f (t) � YH1(ù1) eiù1 t � Y 2 H2(ù1, ù1) ei2ù1 t

� Y 3 H3(ù1, ù1, ù1) ei3ù1 t � � � �

� Y n H n(ù1, . . ., ù1) einù1 t (31)

Fig. 11 Principal quadrant of the second-order composite FRF Ë2(ù1, ù2) in terms of receptance for

the circuit at an input of 3 V peak
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Substituting equation (30) into equation (31) and equating

coefficients of eiù t, ei2ù t and ei3ù t gives expressions for the

principal diagonal of the first three HFRFs in terms of

dynamic stiffness.

H1(ù) � ic1ù (32)

H2(ù, ù) � ÿc2ù
2 (33)

H3(ù, ù, ù) � ÿic3ù
3 (34)

The magnitude of the first-order FRF increases linearly

with frequency, the gradient of this increase is the linear

damping coefficient c1. The `i' term indicates the funda-

mental input and output harmonics are in quadrature. The

magnitude of the second-order FRF is quadratic with

frequency, and the magnitude of the third-order FRF is

cubic with frequency. The `i' term again indicates the third

harmonic in the output is in quadrature with the funda-

mental input harmonic.

By continuing to equate coefficients of higher order,

expressions can be obtained for the principal diagonal of

all HFRFs to order n.

Hn(ù, . . ., ùn) � incnù
n (35)

By dividing the magnitudes of the HFRFs in Fig. 13 at each

frequency step, by ù, ù2 and ù3 respectively, the linear

and non-linear damping coefficients can be plotted, as

shown in Fig. 14. The damping coefficients asymptote to a

constant at high frequencies, the values of which are given

in Table 5.

The sign of the coefficients is determined from the phase

of their corresponding HFRF. The first-order FRF has an

approximately constant phase at 908. The expression for the

first-order FRF in equation (32) is therefore positive and

hence c1 is positive. The phase of the second-order FRF is

not constant but appears to drift close to 08. If a constant

phase of zero is assumed, the expression for the second-

order FRF in equation (33) is positive and hence c2 is

Fig. 12 Principal quadrant of the third-order composite FRF Ë3(ù1, ù2, ù1) in terms of receptance

for the circuit at an input of 3 V peak
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negative. The phase of the third-order FRF is approxi-

mately constant at 908, the expression for the third-order

FRF in equation (34) is therefore positive and hence c3 is

negative.

The damping coefficients from the HFRFs were used to

model the damper's behaviour. To assess their accuracy, a

force±velocity diagram was obtained from data generated

by the model, and compared to a force±velocity diagram

from experimental data using a 2±50 Hz band-limited

random input at 0.5 V. Figure 15 shows the force±velocity

diagram from the experimental data and Fig. 16 shows a

section through this force±velocity diagram at zero dis-

placement. The two diagrams clearly show the damper's

characteristics are dominated by a cubic softening beha-

viour. This is consistent with the large negative third-order

coefficient determined from the HFRFs.

Figure 17 compares the sectioned force±velocity dia-

gram from the model with the sectioned force±velocity

diagram from the experimental data. The model fit is poor

with a normalized mean-square error of 41.0 per cent.

Figure 18 shows the contribution from each coefficient to

the damping characteristics of the model. The linear

coefficient is clearly too small. However, it is difficult to

compare force±velocity diagrams from data obtained by

random excitation at 0.5 V with model data using coeffi-

cients from harmonic probing at 0.5 V. This is because the

response of the damper is dependent on the type and level

of the input.

A better representation of the damper's behaviour could

be obtained by fitting a polynomial model to data using a

least-squares estimation. Table 6 compares the coefficients

from the HFRFs with those from a third-order polynomial

model fitted to the experimental data. Figure 19 compares

the force±velocity diagrams from the experimental data

with the least-squares model. The least-squares model has

a normalized mean-square error of 4.5 per cent, signifi-

cantly better than the model from the HFRFs.

The process of characterizing automotive dampers using

HFRFs appears to offer little advantage over polynomial

models. An improved model could be obtained by intro-

ducing coefficients of higher order by measuring the

principal diagonal of the corresponding HFRF. However,

Fig. 13 Principal diagonal of the first-, second- and third-order composite FRFs for the damper
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the technique's success is limited by the inaccuracy of the

coefficients, a consequence of the inability to measure the

pure HFRFs and the fact that the non-linearities of the

actuator distort the sinusoidal input and create additional

components to the harmonics in the force output. Unfortu-

nately, it is impossible to separate the individual compo-

nents of a harmonic, hence all coefficients determined

from the composite HFRFs are not general but conditional

on the type and level of the input. By changing the input

a new set of HFRFs and coefficients are required to

characterize the damper's behaviour.

Figures 20 and 21 show the principal quadrant of the

multidimensional second- and third-order FRFs, in terms

of magnitude, phase and corresponding contour plots. To

reduce the number of tests required to complete the

multidimensional HFRFs, only half of the surfaces were

obtained experimentally. The multidimensional second-

order FRF was completed by mirroring the data along its

axis of symmetry, the principal diagonal. Unfortunately,

this technique is invalid for the third-order FRF and so

only half the surface was obtained. The multidimensional

HFRFs appear to offer no new information about the

characteristics of the damper. The response of the multi-

dimensional second-order FRF can be predicted by consid-

ering an input containing two harmonics. The Volterra

series representation of the force output can be written

from equation (6) as

f (t) � H1(ù1)Y1 eiù1 t � H1(ù2)Y2 eiù2 t

� H2(ù1, ù1)Y 2
1 ei2ù1 t � H2(ù2, ù2)Y 2

2 ei2ù2 t

� 2H2(ù1, ù2)Y1Y2 ei(ù1�ù2) t (36)

Fig. 14 Non-linear damping values for the damper

Table 5 Values of the linear and non-linear

damping coefficients

Term Damping value Units

c1 1.60e � 3 N=(m=s)
c2 ÿ8.32e � 2 N=(m=s)2

c3 ÿ3.85e � 4 N=(m=s)3
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If the input is

y(t) � Y1 eiù1 t � Y2 eiù2 t (37)

the velocity becomes

_y(t) � iù1Y1 eiù1 t � iù2Y2 eiù2 t (38)

and

_y(t)2 � ÿù2
1Y 2

1 ei2ù1 t ÿ 2ù1ù2Y1Y2 ei(ù1�ù2) t

ÿ ù2
2Y 2

2 ei2ù2 t (39)

Substituting equations (36), (37), (38) and (39) into

Fig. 16 Sectioned force±velocity diagram for the damper

using 2±50 Hz band-limited random excitation at

input voltage of 0.5 V

Fig. 17 Sectioned force±velocity diagram for the damper

and model

Fig. 18 Contribution to damping force from the HFRF

coefficients

Fig. 15 Force±velocity diagram for the damper using 2±

50 Hz band-limited random excitation at input

voltage of 0.5 V
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equation (29) and equating coefficients of ei(ù1�ù2) t gives

H2(ù1, ù2) � ÿc2ù1ù2 (40)

The magnitude of the multidimensional second-order FRF

is dependent on the multiple of the two frequencies.

However, the phase in Fig. 20 appears more regular than in

the principal diagonal, in areas of high frequency the phase

is constant at 08, validating the assumption that c2 was

negative.

A similar expression for the multidimensional surface

of the third-order FRF can be obtained by assuming an

Fig. 20 Principal quadrant of the second-order composite FRF Ë2(ù1, ù2) for the damper

Fig. 19 Sectioned force±velocity diagram for the damper

and curve fit using coefficients from the least-

squares estimation

Table 6 Comparison of coefficients from a least-squares

estimate and the HFRFs

Coefficient HFRFs Least-squares Units

c0 ÿ3.75e � 1 N
c1 1.60e � 3 2.86e � 3 N=(m=s)
c2 ÿ8.32e � 2 8.93e � 3 N=(m=s)2

c3 ÿ3.85e � 4 ÿ9.36e � 3 N=(m=s)3

M.S.E. 41.0 4.5 %
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input of three harmonics and equating coefficients of

ei(ù1�ù2�ù3) t to give

H3(ù1, ù2, ù3) � ÿic3ù1ù2ù3 (41)

The magnitude of the FRF is a multiple of the three input

frequencies.

6 CONCLUSIONS

The principal diagonals of the first three composite HFRFs

were successfully obtained for the automotive damper

using the harmonic probing technique. The magnitude of

the HFRFs contained no peaks indicating that there were

no preferred frequencies for energy transfer. The HFRFs

provided simple non-linear damping coefficients for the

automotive damper. However, the accuracy of these coeffi-

cients was poor compared to polynomial models fitted by

least-squares estimation. This was due to the inability of

the technique to measure the pure HFRFs, a consequence

of harmonic probing with a sine wave. This constraint, and

the inability to separate the non-linear effects of the

actuator from those of the damper, currently impose some

limit on the use of the methodology.

The multidimensional HFRFs are considered unneces-

sary for characterizing the behaviour of an automotive

damper. They appear to offer no useful additional informa-

tion over the principal diagonals.
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